
Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

BIQUAD COEFFICIENTS OPTIMIZATION VIA KOLMOGOROV-ARNOLD NETWORKS

Ayoub Malek

Automotive laboratory
Huawei Munich Research Center

Munich, DE
ayoub.malek@huawei.com

Donald Schulz

Automotive laboratory
Huawei Munich Research Center

Munich, DE
donald.schulz@huawei.com

Felix Wuebbelmann

Automotive laboratory
Huawei Munich Research Center

Munich, DE
felix.wuebbelmann@huawei.com

ABSTRACT

Conventional Deep Learning (DL) approaches to Infinite Impulse
Response (IIR) filter coefficients estimation from arbitrary fre-
quency response are quite limited. They often suffer from ineffi-
ciencies such as tight training requirements, high complexity, and
limited accuracy. As an alternative, in this paper, we explore the
use of Kolmogorov-Arnold Networks (KANs) to predict the IIR
filter—specifically biquad coefficients—effectively. By leverag-
ing the high interpretability and accuracy of KANs, we achieve
smooth coefficients’ optimization. Furthermore, by constraining
the search space and exploring different loss functions, we demon-
strate improved performance in speed and accuracy. Our approach
is evaluated against other existing differentiable IIR filter solu-
tions. The results show significant advantages of KANs over ex-
isting methods, offering steadier convergences and more accurate
results. This offers new possibilities for integrating digital infinite
impulse response (IIR) filters into deep-learning frameworks.

1. INTRODUCTION

IIR filters are widely used in control systems, audio process-
ing, and communications due to their efficiency, low memory
usage, and ability to emulate analog filters. They achieve sharp
frequency responses with fewer coefficients than FIR filters,
making them ideal for real-time tasks (despite stability and phase
limitations) such as equalization, tone matching, and feedback
reduction, etc. [1, 2]. However, existing methods for designing
and estimating IIR filter coefficients from an arbitrary frequency
response typically rely on heuristic or lengthy and slow iterative
processes, which can be computationally expensive. These
methods are particularly challenging in scenarios that require
high precision and fast processing times [3]. Existing IIR filter
design approaches usually focus on specific filter prototypes (e.g.
low-pass filters, all poles filters, etc.) and employ techniques
like modified Yule-Walker (MYW) estimation [4], least squares
[5], linear programming, and gradient-based optimization [6, 7].
Although these methods can achieve reasonable accuracy, they
often have inherent limitations. For example, the MYW method is
computationally efficient, but may yield inaccurate results when
the target response exhibits a complex structure [8]. On the other
hand, iterative methods tend to offer higher accuracy but are
computationally expensive and susceptible to challenges posed
by non-convex optimization landscapes, leading to sensitivity to
initial conditions and the risk of getting stuck in local minima [9].

Copyright: © 2025 Ayoub Malek et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

Recent advances in signal processing and machine learning
have led to the development of methods that integrate traditional
Digital Signal Processing (DSP) techniques within deep learning
frameworks. Among these innovations, the inclusion of IIR filters
—particularly biquad filters— into Differentiable DSP (DDSP)
models [10]. This promising combination addresses these limita-
tions by incorporating differentiable operations into filter design.
This enables the direct estimation of IIR filter coefficients within
a neural network framework, allowing for backpropagation-based
optimization [11]. Engel et al. [10] demonstrated that DDSP
components, such as FIR filters and oscillators, can be seamlessly
integrated into deep learning models, significantly enhancing
both training efficiency and model performance. This integra-
tion leverages differentiable operations that enable powerful
gradient-based optimization techniques while maintaining com-
putational efficiency and supporting innovative neural network
architectures. Notably, Recurrent Neural Networks (RNNs) have
emerged as particularly effective tools for IIR filter design [12].
Taking advantage of their structural similarities to IIR filters,
RNNs can learn arbitrary filter behaviors directly from data,
effectively capturing the recursive dynamics of IIR filters [13].
This capability establishes RNNs as a robust framework for
designing flexible and computationally efficient filtering systems
[13, 14]. However, these models often encounter difficulties due
to the recursive operations inherent to RNNs, requiring multiple
gradient updates over time. Due to these recursive operations,
RNNs suffer from various gradient-related issues (e.g., vanishing
gradient, exploding gradient), making the training process slow
and complex [15, 16]. Recent research has sought to mitigate
these challenges by training neural networks to directly estimate
the parameters of graphic and parametric equalizers. This involves
training models to estimate the coefficients of IIR filters from
their frequency responses [14]. While these approaches avoid
some computational bottlenecks, they may still be limited by the
specific estimated IIR filter prototype (e.g. all-poles, shelving,
peak filter, etc.). [17, 18, 19], or they lack flexibility and accuracy
due to their dependency on training data [8].

The promising results reported in [8, 13] highlight the po-
tential of deep learning-based approaches for filter design.
Building on these foundations, we propose a novel KAN-based
framework for biquad IIR filter design that directly estimates
filter coefficients through differentiable filtering. To ensure
stability and improve performance, we introduce constrained
search spaces and explore a range of loss functions, achieving
enhancements in both speed and accuracy. We conduct a com-
prehensive evaluation against state-of-the-art differentiable IIR
design methods, including RNN-based [13] and MLP-based [8]

DAFx.1

mailto:ayoub.malek@huawei.com
mailto:donald.schulz@huawei.com
mailto:felix.wuebbelmann@huawei.com
http://creativecommons.org/licenses/by/4.0/

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

approaches, across a diverse benchmark of 10 test filters. Our
results demonstrate that the KAN-based method achieves faster
convergence and lower approximation error. Additionally, we
provide an interpretable analysis of pole-zero distributions and the
effects of key hyperparameters.

2. BACKGROUND

2.1. Biquad Coefficients (BA) Representation

The transfer function of the biquad filter can be represented via its
BA coefficients and substituting z = e−j2πf as follows:

H(f) =
b0 + b1e

−j2πf + b2e
−j4πf

1 + a1e−j2πf + a2e−j4πf
, (1)

with f the frequency in Hz and e−j2πf represents the complex ex-
ponential corresponding to the frequency f . As for the magnitude
and phase responses, they are then calculated as follows:

|H(f)| =
∣∣∣∣ b0 + b1e

−j2πf + b2e
−j4πf

1 + a1e−j2πf + a2e−j4πf

∣∣∣∣ (2)

∠H(f) = atan2 (Im(H(f)), Re(H(f))) (3)

where atan2(y, x) is the four-quadrant inverse tangent, which
computes the phase of the complex response H(f).

2.2. Zero-Pole-Gain (ZPK) Representation

A biquad filter can also be described using its zeros and poles,
which represent the roots of the numerator and denominator poly-
nomials, respectively. The transfer function in terms of zeros and
poles is given by:

H(z) = G · (z − z1)(z − z2)

(z − p1)(z − p2)
, (4)

where, G is the system gain, z1 and z2 are the zeros of the filter,
and p1 and p2 are the poles of the filter. The zeros and poles are
typically represented as complex numbers. Hence, each zero z and
pole p can be expressed as:

z = q0 + jq1, p = p0 + jp1

with q0, q1 being the real and imaginary parts of the zero and p0, p1
are the real and imaginary parts of the pole, respectively. Here, j
denotes the imaginary unit.

2.3. Conversion of Zeros and Poles to Biquad Coefficients

The feedforward coefficients b0, b1, b2 are computed from the zero
positions as follows:

b0 = G

b1 = −2 ·G · Re(z)

b2 = G ·
[
Re(z)2 + Im(z)2

] (5)

where G is the system gain and Re(z) and Im(z) are the real and
imaginary parts of the zero z, respectively. Similarly, the feedback
coefficients a1, a2 are computed from the pole positions as:

a1 = −2 · Re(p)

a2 = Re(p)2 + Im(p)2
(6)

where Re(p), Im(p) are the real and imaginary parts of the pole
p. The conversion between the ZPK and BA forms involves ei-
ther combining the zeros and poles to form the biquad transfer
function (ZPK to BA) or solving the quadratic equations for each
second-order section (BA to ZPK). This allows flexibility in filter
implementation, as each form has its own advantages depending
on the context, such as ease of implementation, numerical stabil-
ity, or filter design objectives.

2.4. Neural Network Approach for Filter Design

The application of neural networks for filter coefficient estimation
often involves a differentiable reimplementation of DSP, which can
be integrated with traditional neural networks such as Multilayer
Perceptrons (MLPs) [8]. While MLPs have proven to be a robust
and versatile choice for various problems, the level of interpretabil-
ity required in this context, combined with the non-convex nature
of the problem, suggests that MLPs might not be the optimal so-
lution. To address these limitations, we introduce Kolmogorov
Arnold networks (KANs), a novel paradigm of neural networks
where the weights are fixed and the activations are trained. KANs
have shown superior performance in symbolic formula represen-
tation and offer significant interpretability advantages over tradi-
tional neural networks [20, 21].

3. EXISTING APPROACHES

Conventional methods for computing biquad filter coefficients typ-
ically rely on numerical optimization techniques or closed-form
solutions derived from specific filter design specifications. Al-
though effective for static filtering tasks, these methods face limi-
tations when integrated into adaptive systems, such as neural net-
works, which require flexibility and real-time learning capabilities.
Recent research has shifted towards differentiable filter design via
Differentiable Digital Signal Processing. DDSP combines tradi-
tional Digital Signal Processing (DSP) with Deep Learning (DL),
offering novel approaches to estimating filter parameters in dy-
namic and adaptive settings. This paradigm reimplements tradi-
tional DSP algorithms using differentiable operations, enabling
the integration of classic DSP techniques, such as filtering and
oscillation, into deep learning models. Through this framework,
backpropagation can be used for optimization [10]. DDSP has
been applied to various signal processing tasks, including the es-
timation of filter coefficients, where it improves the direct learn-
ing of filter parameters within a neural network architecture. A
significant body of research has focused on using DDSP for fil-
ter parameter estimation. Kuznetsov et al. demonstrated how
Recurrent Neural Networks (RNNs) can provide a practical im-
plementation of differentiable IIR filters [13]. Most other studies
in this domain have targeted specific filter types, such as all-pass
and all-pole filters. For example, Bargum et al. [18] and Yu et
al. [19] explored differentiable models to estimate the coefficients
of these specialized filters, showcasing their potential for adaptive
signal processing. These models optimize filter coefficients us-
ing gradient-based methods, offering a more efficient and scalable
solution compared to traditional optimization-based approaches.
The research by Mockenhaupt et al. [22] and Nercessian et al.
[9] investigated neural network-based approaches combined with
DDSP elements for automatic equalization in various audio pro-
cessing scenarios. These studies predict biquad coefficients us-
ing neural networks, highlighting the ability of DDSP to learn

DAFx.2

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

filter parameters directly from data. This is particularly benefi-
cial in dynamic environments where traditional methods struggle
to adapt. Another key area of research emphasizes the flexibil-
ity of DDSP-based methods in filter design. Colonel et al. [8]
argued that filter design should not be restricted to specific filter
prototypes, as is often the case with traditional methods. Instead,
they proposed a direct design approach using Multilayer Percep-
trons (MLPs) to estimate biquad filter coefficients. This method
adapts to a wide range of filter types and responses, enabling the
development of more general-purpose models applicable to vari-
ous signal processing tasks without being constrained by prede-
fined filter structures. In conclusion, this shift to DDSP opens up
new possibilities for accurate, data-driven filter coefficient estima-
tion from arbitrary frequency responses; therefore, surpassing the
limitations of classic optimization techniques. However, none of
these approaches leverage the symbolic interpretability of KANs;
our method fills this gap by using KANs to directly estimate filter
parameters, combining the flexibility of DDSP with KAN’s struc-
tured representation.

4. PROPOSED APPROACH

Inspired by the approaches of Kuznetsov et al. [13], Colonel et
al. [8] and insights from prior research, we introduce a hybrid op-
timization method that leverages Kolmogorov–Arnold Networks
(KANs) [20]. Known for their interpretability, KANs provide sig-
nificant advantages in domains where transparency and adaptabil-
ity are critical [21]. Our method combines the high precision of
iterative optimization with the speed and predictive power of neu-
ral networks. The central idea of our approach is the direct estima-
tion of IIR filter coefficients from its frequency response. Starting
with the frequency response, we simulate the filtering of an input
signal and iteratively adjust the filter coefficients based on the re-
sulting input-output pairs. This iterative process is guided by a
loss function that quantifies the difference between the predicted
filtered output and the expected output, which is precomputed for
comparison. The error is then backpropagated through the net-
work, allowing the model to refine its parameters with each itera-
tion. Optimization continues until a predefined number of epochs
or a target loss threshold is reached. Once this criterion is satisfied,
we calculate the Mean Squared Error (MSE) between the predicted
and target filter coefficients, providing an objective measure of the
estimation’s accuracy. This iterative refinement process, combined
with the neural network’s ability to directly predict the filter coef-
ficients, enables efficient and precise optimization. The proposed
system architecture is detailed in Figure 1 and Algorithm 1, which
outline the overall process and flow of optimization.

4.1. Introduction to Kolmogorov–Arnold Networks

Kolmogorov–Arnold Networks (KANs) are a new specialized
class of neural networks designed to efficiently approximate
complex, high-dimensional functions. Named after the Kol-
mogorov–Arnold representation theorem [23], these networks
leverage fixed weights while training their activation functions (see
Figure 0.1 from [20]). This design choice enhances both the inter-
pretability and robustness of KANs in specific applications. Un-
like traditional neural networks, such as Multi-Layer Perceptrons
(MLPs), where only weights are learned during training, KANs
offer a unique architecture that prioritizes symbolic representation
and efficient computation [20]. KANs are particularly well-suited

Figure 1: Optimization system architecture.

for tasks that require precise approximations of mathematical rela-
tionships, which makes them ideal candidates for filter coefficient
estimation [21]. By leveraging their inherent adaptability and in-
terpretability, KANs can provide a favorable balance between ac-
curacy and computational efficiency, especially when predicting
biquad filter coefficients. Furthermore, KANs integrate seamlessly
into modern deep learning frameworks due to their differentiable
nature, enabling the use of standard backpropagation algorithms.
This differentiability allows for end-to-end optimization of com-
plex systems that incorporate IIR filters, thereby improving over-
all system performance. Recent studies have highlighted the po-
tential of KANs in symbolic formula representation [21, 20] and
other domains where interpretability and computational efficiency
are critical. Motivated by KANs properties, we explore their use
in signal processing tasks by employing KANs for biquad filter
design based on the frequency response. This approach not only
capitalizes on the strengths of KANs in terms of approximation
and interpretability but also enables the creation of adaptive and
scalable filter design solutions, making them suitable for real-time
applications.

4.2. Data Generation

To implement this gradient-based optimization approach, two dis-
tinct types of data are required:

• Target IIR filter coefficients data.

• Training input and output signals data.

4.2.1. Target filter coefficients data

To train and evaluate the proposed approach, a well-defined set
of target filter coefficients is required. Following the methodol-

DAFx.3

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

ogy presented in [13], we generate these coefficients by randomly
sampling stable second-order polynomial coefficients for the bi-
quad transfer function (Eq. (1)). The sampling process is carefully
constrained to ensure the resulting filters are both valid and stable,
preventing the inclusion of non-causal or unstable filters. Specif-
ically, we enforce stability by ensuring that the poles lie strictly
within the unit circle, as discussed in Section 4.3.

4.2.2. Training input and output signals data

For the optimization process to converge effectively, appropriate
input data is necessary. In line with the approach outlined in [13],
we employ an input signal and its corresponding filtered output
signal within the optimization loop. Specifically, a long sine sweep
signal (covers the whole frequency spectrum) is generated, which
is then passed through the target biquad filter to obtain the filtered
output. The resulting input-output time series pair is then resam-
pled into multiple sequences of length N , which are used as input-
output pairs for training. These input-output pairs are fed into the
neural network iteratively until the filter coefficients converge to
their optimal values.

4.3. Constraints on Coefficients Search Space

To enhance the computational efficiency and convergence of our
KAN-based optimization, we introduce constraints that limit the
search space for biquad coefficients. These constraints are derived
from prior knowledge of the expected parameter ranges and
application-specific requirements. By narrowing the search space,
we ensure that only valid regions are sampled, which results in
stable filters, as illustrated in Figure 1 in [24]. This reduction in
the parameter space accelerates the optimization process while
preserving accuracy.

In the case of the BA coefficients representation, we assume
a0 = 1, therefore the searched coefficients vector is shortened
(n=5) to x = [b0, b1, b2, a1, a2]. This formulation can be extended
to a cascade of biquads to compute higher order IIR filter, where
the search matrix is represented as

X =

b0,1 b1,1 b2,1 a1,1 a2,1

...
b0,k b1,k b2,k a1,k a2,k

 (7)

where k denotes the index of the k-th biquad in the cascade of
biquads. To maintain filter stability, the following constraints de-
rived from [24] must be enforced during the search :

a1,k ← −2 · tanh(a1,k)

a2,k ←
(2− |a1,k|) · tanh(a2,k) + |a1,k|

2

(8)

In the case of the Zero-Pole-Gain (ZPK) representation, we ap-
ply the following equivalent update conditions [8]. Moreover, to
ensure numerical stability, a transformation is applied to the zeros
and poles using the hyperbolic tangent function tanh(x), as shown
below:

z′ =
(1− ϵ) · z · tanh(|z|)

|z|+ ϵ
, p′ =

(1− ϵ) · p · tanh(|p|)
|p|+ ϵ

(9)

where ϵ is a small constant (e.g., ϵ = 10−8) to prevent division by
zero. This transformation ensures that the values of the zeros and
poles are bounded, maintaining numerical stability, especially for
very small or very large values of z and p [8].

4.4. Loss Functions

To integrate IIR structures with KANs within a machine learning
framework, it is essential to utilize platforms such as PyTorch or
TensorFlow [25, 26], which support automatic differentiation of
computational graphs. The ability to compute gradients automati-
cally facilitates the use of custom loss functions, enabling seamless
network training. In this context, the primary consideration is to
ensure that the loss function is differentiable. This requirement al-
lows the backpropagation process to effectively update the model
parameters, enabling efficient optimization of the network. In our
study, we explore three loss functions:

• Impulse Response Loss
• Filtered Sweep Loss
• Filtered Sweep Segments Loss

These loss functions provide effective means to optimize the
filter’s behavior for both spectral characteristics (frequency re-
sponse) and temporal characteristics (filtered sweep) and can be
used separately or combined.

4.4.1. Impulse Response Loss

The Impulse Response Loss function minimizes the difference be-
tween predicted and target frequency responses, using the precom-
puted impulse response of the target as a reference. The predicted
filter’s frequency response is obtained by applying the filter to
a Dirac delta function and performing a Fast Fourier Transform
(FFT). Consider h(t) the impulse response of the filter, which is
obtained by applying the predicted coefficients to a Dirac delta
function δ(t) in t−domain. This leads to the frequency response
H(ω) = FFT(h(t)). Hence, the magnitude and phase of the fre-
quency response are:

|H(ω)| = 20 ˙log10 (|H(ω)|+ ϵ)

∠(H(ω)) = angle(H(ω))
(10)

where ϵ is a small constant to prevent numerical issues. The target
frequency response ytarget is the concatenation of the magnitude
and phase responses of the desired filter. The predicted frequency
response ypred is obtained by the same process. The response loss
function is then defined as the Mean Squared Error (MSE) between
the predicted and target frequency responses:

Limpulse = MSE(H(ω)pred,H(ω)target) (11)

This loss ensures that the frequency response of the predicted filter
matches the desired response in both magnitude and phase.

4.4.2. Filtered Sweep Loss

The Expected Filtered Sweep-based Loss assesses the difference
between the predicted output and the target output after filtering a
sinusoidal sweep signal. This qualifies the filter’s accuracy when
applied for a defined range of frequencies [13]. Given an input

1We use Pytorch (https://pytorch.org/) in our experiment

DAFx.4

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

signal x(t) (e.g., a sweep), the output signal y(t) after applying
the filter with coefficients sos (second-order sections) is given by:

y(t) = filter(x(t), sos) (12)

where the filter operation is performed using the second-order
sections sos (if the reference is provided during testing) or by mul-
tiplying x(t) in the frequency domain with the target filter impulse
response. The loss is then calculated using the MSE between the
predicted output ypredicted(t) and the target output ytarget(t):

Lfiltered_sweep = MSE(ypredicted(t), ytarget(t)) (13)

4.4.3. Filtered Sweep Segments Loss

Similar to the Filtered Sweep Loss, this function evaluates the dif-
ference between the predicted and target outputs after filtering N
overlapping segments from a sinusoidal sweep signal. This is
given by:

Lfiltered_segments =

N∑
n=1

MSE(ypredicted_seg[n](t), ytarget_seg[n](t)) (14)

4.5. Evaluation

Upon completion of the optimization process—either after a suffi-
cient number of epochs or upon reaching a predefined loss thresh-
old—the optimization loop terminates. The predicted filter coeffi-
cients are then used to compute the filter’s impulse response. This
response is subsequently employed to generate the magnitude and
phase plots, which are compared to those of the target filter. Fig-
ure 2 shows the magnitude and phase responses of the predicted
filter versus the target, along with the corresponding differences.
The zeros and poles of the predicted filter are visualized in the po-
lar coordinate system and analyzed relative to the target configu-
ration, as shown in Figure 3. Finally, the loss curve is examined to
assess its smoothness—providing insight into the convexity of the
optimization landscape—and to evaluate the overall effectiveness
of the optimization process.

5. RESULTS

This section presents the outcome of the experiments conducted to
assess the performance of the proposed KAN-based optimization
for IIR filters design. The evaluation was carried out using a set
of 10 filter designs, with a variety of hyperparameters tested for
each method. Furthermore, we compared the performance of the
KAN-based approach with two alternative methods: an optimiza-
tion method based on RNNs, as described in [13], and a neural
network-based approach utilizing MLPs, as outlined in [8].

5.1. RNN-based Approach

The RNN-based approach demonstrated strong stability and accu-
racy across most test cases [13], but its convergence times were
significantly longer, primarily due to the time step-based nature of
the method. As a result, RNN proved to be less efficient than the
KAN-based method, especially in applications that require rapid
results. Although the RNN maintained stable performance across
various filter designs, it occasionally faced challenges in conver-
gence, often becoming trapped in local minima. One potential
strategy to address this issue is to initialize the optimization with

100 101 102

f (Hz)

0

10

|re
sp

on
se

(x
)|

(d
B

)

Magnitude response

Target
Predicted
Min loss prediction

100 101 102

f [Hz]

0

100

200

m
ag

di
ff

[d
B

]

Magnitude Difference (min-loss)

Magnitude Difference
Magnitude Difference (min-loss)

100 101 102

f (Hz)

0.0

0.5

1.0

1.5

Ph
i(

de
gr

ee
s)

Phase response

Target
Predicted
Min loss prediction

100 101 102

f [Hz]

0.00

0.02

0.04

0.06

Ph
as

e
di

ff
[d

eg
re

es
]

Phase Difference (min loss)

Phase Difference
Phase Difference (min loss)

100 101 102

f (Hz)

0

10

|re
sp

on
se

(x
)|

(d
B

)

Magnitude response

Target
Predicted
Min loss prediction

100 101 102

f [Hz]

0

100

200

m
ag

di
ff

[d
B

]

Magnitude Difference (min-loss)

Magnitude Difference
Magnitude Difference (min-loss)

100 101 102

f (Hz)

0.0

0.5

1.0

1.5

Ph
i(

de
gr

ee
s)

Phase response

Target
Predicted
Min loss prediction

100 101 102

f [Hz]

0.00

0.02

0.04

0.06

Ph
as

e
di

ff
[d

eg
re

es
]

Phase Difference (min loss)

Phase Difference
Phase Difference (min loss)

Figure 2: Comparison of magnitude (Top) and phase (bottom) re-
sponses of target filter (solid line) vs. predicted filter (dashed line)
and minimum-loss prediction (dotted line). Each plot has a corre-
sponding magnitude and phase difference between target and pre-
dicted outputs.

different starting points, thus mitigating the risk of local minima
and improving convergence reliability [27].

5.2. MLP-based Approach

The MLP-based approach initially demonstrated potential, but
struggled to consistently generate accurate IIR filter designs. Al-
though it frequently approximated the target frequency response,
it rarely achieved an exact match, likely due to overfitting or dis-
crepancies between the training and test data. A significant lim-
itation encountered in our tests was the model’s inability to de-
sign IIR filters of order lower than 4 or adjust to those designs,
preventing a meaningful comparison between different filter or-
ders. Performance also degraded substantially when the approach
was applied to higher-order filters, highlighting its scalability is-
sues. Despite the practical framework suggested by Colonel et al.
[8], the MLP approach requires large datasets and extensive train-
ing time to perform effectively. Furthermore, once trained, the

DAFx.5

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

−1.0 −0.5 0.0 0.5 1.0
Re(Z)

−1.0

−0.5

0.0

0.5

1.0
Im

(Z
)

Poles and Zeros of the Filter
Target Zeroes
Target Poles

Predicted Zeroes
Predicted Poles

Figure 3: Poles and zeros in the Z-plane for the target biquad
(green) and the KAN-predicted filter (red) within the stability re-
gion (unit circle).

model’s performance on unseen data proved difficult to diagnose,
especially when the data diverged from the training set. The inher-
ent "black-box" nature of MLPs further complicates troubleshoot-
ing, necessitating more representative training data or substantial
architectural modifications, both of which are time-consuming and
resource-intensive tasks.

5.3. KAN-based Optimization

The KAN-based method consistently exhibited stable performance
and faster convergence relative to the RNN-based approach. The
loss function showed a faster reduction during training. However,
similar to the RNN approach, the loss occasionally oscillated,
likely due to challenges in hyperparameter tuning or suboptimal
initial conditions. Although a search solution akin to the one
cited by Kirkpatrick et al. [27] could be applied to mitigate these
fluctuations, the primary advantage of the KAN-based method lies
in its faster processing speed. This speed enables more parallel
runs and, consequently, a higher number of restarts within a
given time frame. Despite occasional oscillations, the KAN-based
approach consistently demonstrated strong performance in terms
of both speed and loss convergence.

To optimize the hyperparameters, we used the Optuna frame-
work [28], exploring various configurations with the goal of
minimizing the total loss. The optimization process involved
1500 trials, each with a specific set of hyperparameters. The
results were manually analyzed and the optimal configurations
were selected to construct Figure 4, which highlights the desired
ranges for the hyperparameters to ensure convergence and perfect
predictions 2. Furthermore, we examined a composite loss
function combining filtering and frequency response losses:
L = Lfiltered_sweep + Limpulse + Lfiltered_segments. Our experiments
revealed that the filtering-based loss functions outperformed
the impulse-based one. The plot in Figure 5 illustrates that
minimizing the loss function should lead to correct predictions.
However, as shown in the density distribution, some high-loss
cases still resulted in correct predictions.

2 Perfect predictions consist of final results where the predicted and
target responses perfectly overlap. These were manually selected.

0 50 100 150
0.00

0.02

0.04

D
en

si
ty

Epoch

Epoch

−200 0 200 400 600 800
0.000

0.005

0.010

D
en

si
ty

BatchSize

BatchSize

0 500 1000
0.000

0.001

0.002

D
en

si
ty

SequenceStep

NumPoints

−500 0 500 1000 1500
0.000

0.002

D
en

si
ty

SequenceLength

SequenceLength

0 500 1000
0.000

0.002

0.004

D
en

si
ty

NumPoints

SequenceStep

−0.5 0.0 0.5 1.0 1.5
0

10

20

D
en

si
ty

LearningRate

LearningRate

Feature Distributions

0 50 100 150
0.00

0.02

0.04

D
en

si
ty

Epoch

Epoch

−200 0 200 400 600 800
0.000

0.005

0.010

D
en

si
ty

BatchSize

BatchSize

0 500 1000
0.000

0.001

0.002

D
en

si
ty

SequenceStep

NumPoints

−500 0 500 1000 1500
0.000

0.002

D
en

si
ty

SequenceLength

SequenceLength

0 500 1000
0.000

0.002

0.004

D
en

si
ty

NumPoints

SequenceStep

−0.5 0.0 0.5 1.0 1.5
0

10

20

D
en

si
ty

LearningRate

LearningRate

Feature Distributions

Figure 4: Distributions of hyperparameters (from Optuna trials)
that yielded exact convergence (“perfect” predictions where out-
put matched target).

5.4. Summary of Results

To summarize the key findings, the KAN-based method outper-
formed both the RNN and MLP approaches. It excelled over the
RNN in terms of both speed and accuracy, while also offering a
more interpretable and debuggable framework compared to the
MLP. The RNN demonstrated stability, but was slower, whereas
the MLP struggled to produce accurate predictions for targets that
are not modeled in the training data. A more detailed comparison
is provided in Table 1.

5.5. Discussion

The KAN-based approach offers significant advantages in com-
putational efficiency and stability compared to gradient-based and
neural network methods, making it particularly suitable for filter
design and parametric estimation tasks. It achieves faster conver-

DAFx.6

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

0 100
0.00

0.01

0.02
D

en
si

ty
EndLoss

Figure 5: Final loss distribution for perfect predictions.

Metric

Method
KAN-based RNN-based [13] MLP-based [8]

Type Gradient based
optimization

Gradient based
optimization

Trained network

Training
duration
(Epochs)

Fastest training
loop

Fast training loop Slow
(requires a lot of
training data &
lengthy training)

Prediction
duration
(Epochs)

Moderate Slowest Fastest
(requires lengthy
training)

Accuracy High High Moderate to low

Loss Smooth loss
(with some ex-
ceptions)

Smooth loss
(with many excep-
tions due to RNN
nature)

Data dependent

Table 1: Comparison of filter coefficients approaches.

gence and smoother loss reduction than the RNN-based method,
which, although stable, requires longer training times and is more
prone to local minima. In contrast to the MLP-based method,
the KAN approach is more flexible and adaptable, providing a
more practical solution, especially in scenarios requiring rapid
optimization. Although the KAN method demonstrates strong
performance, it is still in the early stages of development. One of
the main challenges is handling non-differentiable representations
for higher-order filters, which currently limits its applicability.
This limitation arises from the absence of a stable differentiable
implementation (based on a cascade of biquads) for high-order IIR
filters. Expanding the method to accommodate higher-order filters
and evaluating it across diverse datasets are critical to refining its
capabilities and improving generalization. Moreover, while the
filtering-based loss function outperforms the impulse-based one,
further research is needed to identify the optimal loss function for
filter design.

The use of Optuna for hyperparameter optimization has en-
hanced the method’s efficiency. However, tuning remains
challenging, particularly for achieving consistent results across
different filter types, necessitating further experimentation. De-
spite these challenges, the KAN-based approach offers a robust,
flexible, and efficient alternative to RNNs and MLPs, providing
faster processing and improved performance stability.

6. CONCLUSIONS

In this paper, we introduced a KAN-based optimization method
for estimating the coefficients of second-order IIR filters (biquad).
The approach offers a viable alternative to traditional gradient-

based and neural network methods for filter design and parametric
estimation tasks. It demonstrated faster convergence and greater
stability compared to RNN-based methods and greater flexibility
than MLP-based approaches. Although the method shows signif-
icant potential, it is still in the early stages and has challenges to
address. Further testing and extension to higher-order filters are
necessary to fully realize its capabilities.

7. REFERENCES

[1] Vesa Välimäki and Joshua D. Reiss, “All about audio equal-
ization: Solutions and frontiers,” Applied Sciences, vol. 6,
no. 5, pp. 129, 2016.

[2] A. Martinez-Leira, R. Vicen-Bueno, R. Gil-Pita, and
M. Rosa-Zurera, “Acoustic feedback reduction based on fir
and iir adaptive filters in ite digital hearing aids,” in Proc.
2008 IEEE Int. Conf. on Audio, Language and Image Pro-
cessing (ICALIP), Shanghai, China, July 2008, pp. 1442–
1448.

[3] Eero-Pekka Damskägg, Lauri Juvela, Etienne Thuillier, and
Vesa Välimäki, “Deep learning for tube amplifier emula-
tion,” in Proc. 2019 IEEE Int. Conf. Acoustics, Speech, and
Signal Processing (ICASSP), Brighton, UK, May 2019, pp.
471–475.

[4] Y. Chan and R. Langford, “Spectral estimation via the high-
order yule-walker equations,” IEEE Trans. Acoustics, Speech
and Signal Process., vol. 30, no. 5, pp. 689–698, 1982.

[5] M. C. Lang, “Weighted least squares iir filter design with ar-
bitrary magnitude and phase responses and specified stability
margin,” in Proc. 1998 IEEE Symp. on Advances in Digital
Filtering and Signal Processing (ADFSP), 1998, pp. 82–86.

[6] V. L. Stonick and D. Massie, “Optimal ls iir filter design for
music analysis/synthesis,” in Proc. 1992 IEEE Int. Symp. on
Circuits and Systems (ISCAS), San Diego, CA, USA, May
1992, pp. 2405–2408.

[7] S. Nishimura and Hai-Yun Jiang, “Gradient-based complex
adaptive iir notch filters for frequency estimation,” in Proc.
Asia Pacific Conf. on Circuits and Systems (APCCAS), 1996,
pp. 235–238.

[8] Joseph T. Colonel, Christian J. Steinmetz, Marcus Michelen,
and Joshua D. Reiss, “Direct design of biquad filter cascades
with deep learning by sampling random polynomials,” in
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Singapore, May 2022, pp. 3104–3108.

[9] Shahan Nercessian, “Neural parametric equalizer matching
using differentiable biquads,” in Proc. Digital Audio Effects
(DAFx-20), Vienna, Austria, Sept. 2020, pp. 265–272.

[10] Jesse Engel, Lamtharn Hantrakul, Chenjie Gu, and Adam
Roberts, “Ddsp: Differentiable digital signal processing,”
in Proc. 8th Int. Conf. on Learning Representations (ICLR
2020), Addis Ababa, Ethiopia, Apr. 2020.

[11] Yoshiki Masuyama, Gordon Wichern, François G. Germain,
Zexu Pan, Sameer Khurana, Chiori Hori, and Jonathan
Le Roux, “NIIRF: Neural IIR filter field for HRTF upsam-
pling and personalization,” in Proc. 2024 IEEE Int. Conf.
Acoustics, Speech, and Signal Processing (ICASSP), Seoul,
Republic of Korea, Apr. 2024.

DAFx.7

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

[12] Alec Wright, Eero-Pekka Damskägg, and Vesa Välimäki,
“Real-time black-box modelling with recurrent neural net-
works,” in Proc. 22nd Int. Conf. Digital Audio Effects
(DAFx-19), Birmingham, UK, Sept. 2019, pp. 248–255.

[13] Boris Kuznetsov, Julian D. Parker, and Fabián Esqueda,
“Differentiable iir filters for machine learning applications,”
in Proc. Digital Audio Effects (DAFx-20), Vienna, Austria,
Sept. 2020, pp. 297–303.

[14] Giovanni Pepe, Leonardo Gabrielli, Stefano Squartini, and
Luca Cattani, “Designing audio equalization filters by deep
neural networks,” Applied Sciences, vol. 10, no. 7, pp. 2483,
2020.

[15] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio, “On
the difficulty of training recurrent neural networks,” in Proc.
30th Int. Conf. on Machine Learning (ICML), Atlanta, GA,
USA, June 2013, pp. 1310–1318.

[16] António H. Ribeiro, Koen Tiels, Luis A. Aguirre, and
Thomas B. Schön, “Beyond exploding and vanishing gra-
dients: analysing rnn training using attractors and smooth-
ness,” in Proc. 23rd Int. Conf. on Artificial Intelligence and
Statistics (AISTATS), Aug. 2020, pp. 2370–2380.

[17] Purbaditya Bhattacharya, Patrick Nowak, and Udo Zölzer,
“Optimization of cascaded parametric peak and shelving fil-
ters with backpropagation algorithm,” in Proc. 23rd Int.
Conf. Digital Audio Effects (DAFx-20), Vienna, Austria,
Sept. 2020, pp. 101–108.

[18] Anders R. Bargum, Stefania Serafin, Cumhur Erkut, and Ju-
lian D. Parker, “Differentiable allpass filters for phase re-
sponse estimation and automatic signal alignment,” in Proc.
Digital Audio Effects (DAFx-23), Copenhagen, Denmark,
Sept. 2023, pp. 235–242.

[19] Chin-Yun Yu, Christopher Mitcheltree, Alistair Carson, Ste-
fan Bilbao, Joshua D. Reiss, and György Fazekas, “Differ-
entiable all-pole filters for time-varying audio systems,” in
Proc. Digital Audio Effects (DAFx-24), Guildford, UK, Sept.
2024, pp. 345–352.

[20] Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle,
James Halverson, Marin Soljacic, Thomas Y. Hou, and Max
Tegmark, “Kan: Kolmogorov–arnold networks,” in Proc. In-
ternational Conference on Learning Representations (ICLR),
2025, pp. 70367–70413.

[21] Runpeng Yu, Weihao Yu, and Xinchao Wang, “Kan or mlp:
A fairer comparison,” arXiv preprint, vol. 2407.16674, 2024.

[22] Florian Mockenhaupt, Joscha Simon Rieber, and Shahan
Nercessian, “Automatic equalization for individual instru-
ment tracks using convolutional neural networks,” in Proc.
Digital Audio Effects (DAFx-24), Guildford, UK, Sept. 2024,
pp. 57–64.

[23] Tianrui Ji, Yuntian Hou, and Di Zhang, “A comprehen-
sive survey on kolmogorov arnold networks (kan),” arXiv
preprint, vol. 2407.11075, 2024.

[24] Shahan C. Nercessian, Andy M. Sarroff, and Kurt James
Werner, “Lightweight and interpretable neural modeling
of an audio distortion effect using hyperconditioned differ-
entiable biquads,” in Proc. IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), Toronto, Canada,
June 2021, pp. 890–894.

[25] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala, “Py-
torch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Sys-
tems (NeurIPS 2019), Vancouver, BC, Canada, Dec. 2019,
vol. 32, pp. 8024–8035.

[26] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Mur-
ray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete War-
den, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng, “Ten-
sorflow: A system for large-scale machine learning,” in Proc.
12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Savannah, GA, USA, Nov. 2016,
pp. 265–283.

[27] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, no. 4598, pp.
671–680, 1983.

[28] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru
Ohta, and Masanori Koyama, “Optuna: A next-generation
hyperparameter optimization framework,” in Proc. 25th
ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining (KDD), Anchorage, AK, USA, Aug. 2019, pp. 2623–
2631.

8. APPENDIX

Algorithm 1: KAN-based Optimization for IIR Filter Design
Data: Target filter frequency response,

input sweep signal, and expected filtered signal
Result: Optimized IIR filter coefficients using KANs

1 Initialize:
2 model← KAN_based_network() ;
3 optimizer← Adam(lr = 1e− 3) ;
4 Lseg ← FilterSegmentsLoss();
5 Lresp ← ResponseLoss();
6 Lsweep ← FilterSweepLoss();
7 training_data← segment(sweep, filtered_sweep);

8 for epoch in 1 to n_epochs do
9 epoch_loss← 0;

10 for inputs, targets in training_data do
11 pred_coeffs← model.forward(inputs);

12 pred_filtered_sweep← differentiable_iir(pred_coeffs, sweep);
13 outputs← differentiable_iir(pred_coeffs, inputs);

14 ℓ1 ← Lseg(outputs, targets);
15 ℓ2 ← Lresp(pred_coeffs, target_freq_response);
16 ℓ3 ← Lsweep(filtered_sweep, pred_filtered_sweep);

17 loss← ℓ1 + ℓ2 + ℓ3;
18 Store loss for tracking;

19 optimizer.zero_grad();
20 loss.backward();
21 optimizer.step();

22 After training:
23 Compute poles, zeros, and gain from target ;
24 Evaluate the results using MSE and polar coordinates;

DAFx.8

	1 Introduction
	2 Background
	2.1 Biquad Coefficients (BA) Representation
	2.2 Zero-Pole-Gain (ZPK) Representation
	2.3 Conversion of Zeros and Poles to Biquad Coefficients
	2.4 Neural Network Approach for Filter Design

	3 Existing Approaches
	4 Proposed Approach
	4.1 Introduction to Kolmogorov–Arnold Networks
	4.2 Data Generation
	4.2.1 Target filter coefficients data
	4.2.2 Training input and output signals data

	4.3 Constraints on Coefficients Search Space
	4.4 Loss Functions
	4.4.1 Impulse Response Loss
	4.4.2 Filtered Sweep Loss
	4.4.3 Filtered Sweep Segments Loss

	4.5 Evaluation

	5 Results
	5.1 RNN-based Approach
	5.2 MLP-based Approach
	5.3 KAN-based Optimization
	5.4 Summary of Results
	5.5 Discussion

	6 Conclusions
	7 References
	8 Appendix

