
Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

A STATISTICS-DRIVEN DIFFERENTIABLE APPROACH FOR SOUND TEXTURE
SYNTHESIS AND ANALYSIS

Esteban Gutiérrez

Music Technology Group
Universitat Pompeu Fabra

Barcelona, Spain
esteban.gutierrezc@upf.edu

Frederic Font

Music Technology Group
Universitat Pompeu Fabra

Barcelona, Spain
frederic.font@upf.edu

Xavier Serra

Music Technology Group
Universitat Pompeu Fabra

Barcelona, Spain
xavier.serra@upf.edu

Lonce Wyse

Music Technology Group
Universitat Pompeu Fabra

Barcelona, Spain
lonce.wyse@upf.edu

ABSTRACT

In this work, we introduce TexStat, a novel loss function specif-
ically designed for the analysis and synthesis of texture sounds
characterized by stochastic structure and perceptual stationarity.
Drawing inspiration from the statistical and perceptual framework
of McDermott and Simoncelli, TexStat identifies similarities
between signals belonging to the same texture category without
relying on temporal structure. We also propose using TexStat
as a validation metric alongside Frechet Audio Distances (FAD) to
evaluate texture sound synthesis models. In addition to TexStat,
we present TexEnv, an efficient, lightweight and differentiable
texture sound synthesizer that generates audio by imposing ampli-
tude envelopes on filtered noise. We further integrate these com-
ponents into TexDSP, a DDSP-inspired generative model tailored
for texture sounds. Through extensive experiments across various
texture sound types, we demonstrate that TexStat is perceptu-
ally meaningful, time-invariant, and robust to noise, features that
make it effective both as a loss function for generative tasks and as
a validation metric. All tools and code are provided as open-source
contributions and our PyTorch implementations are efficient, dif-
ferentiable, and highly configurable, enabling its use in both gen-
erative tasks and as a perceptually grounded evaluation metric.

1. INTRODUCTION

Defining audio textures is a complex problem that has been ex-
plored by various authors. The concept originated as an analogy to
visual textures. In [1], Julesz, one of the pioneers in this field, pro-
posed the so-called "Julesz conjecture," suggesting that humans
cannot distinguish between visual textures with similar second-
order statistics. This hypothesis was later disproven in [2], but
whose statistical perspective remains influential in texture analysis
(see [3]) and synthesis (see [4], [5], and [6]). This perspective is
also foundational for this work.

Regarding the auditory domain, an early definition of audio
textures was introduced in [7]. The authors described them as pat-

Copyright: © 2025 Esteban Gutiérrez et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

terns of basic sound elements, called atoms, occurring in struc-
tured but potentially random arrangements. These high-level pat-
terns must remain stable over time while being perceivable within
a short time span. Rosenthal et al. [8] later expanded this idea,
defining audio textures as a two-level structure: atoms forming
the core elements and probability-based transitions governing their
organization. Recent research has refined these ideas, but the bal-
ance between short-term unpredictability and long-term stability
remains a common thread. In this matter, Wyse et al. [9] points out
that sound texture’s complexity and unpredictability at one level is
combined with the sense of eternal sameness at another.

Many approaches have been taken regarding the synthesis and
re-synthesis of texture sounds. These approaches can be classified
in various ways. For example, Sharma et al. [10] separates them
into three categories: granular synthesis, which corresponds to
the concatenation of already existing sounds, as in the pioneering
works [11], [12], and [13]; model-based synthesis, which relies on
either improved time-frequency representation models, as in [14],
physical models, as in [15], and/or physiological/statistical mod-
els, as in the foundational series of articles [4], [5], and [6]; and
finally, deep learning-based models, encompassing various con-
temporary machine learning techniques, as in [16], [9], and [17].

The sound resynthesis task involves recreating a given sound
through analysis and synthesis. While sound reconstruction can be
viewed as an exact replication of the original sound, in the case of
texture-based resynthesis, it is often sufficient to generate a sound
that is perceptually similar to the original, and thus, the resulting
sound may differ significantly in its detailed time structure from
the original one. Moreover, Caracalla et al. [16] state that typ-
ically the texture sound resynthesis goal is to "create sound that
is different from the original while still being recognizable as the
same kind of texture." In the context of deep learning, this goal can
be approached in various ways. For instance, models with inherent
stochasticity naturally generate a "similar enough" sound, drawing
from the set of sounds they can produce, which is influenced by
their biases. Conversely, even in the absence of stochasticity, if the
model’s loss function is perceptually grounded, it will inevitably
focus solely on that instead of exact replication.

An example of a model that performs resynthesis by accu-
rately matching the spectrum of a texture sound is NoiseBandNet
[17], a Differentiable Digital Signal Processing (DDSP)-based ar-

DAFx.1

https://www.upf.edu/web/mtg
mailto:esteban.gutierrezc@upf.edu
https://www.upf.edu/web/mtg
mailto:frederic.font@upf.edu
https://www.upf.edu/web/mtg
mailto:xavier.serra@upf.edu
https://www.upf.edu/web/mtg
mailto:lonce.wyse@upf.edu
http://creativecommons.org/licenses/by/4.0/

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

chitecture that indirectly follows this approach by using a multi-
scale spectrogram loss applied to small time scales (starting at ap-
proximately 0.7 ms) and small sound windows (around 180 ms).
On the side of perceptual/features-based resynthesis using deep
learning, [16] employed a loss function that compares the Gram
matrices of two sets of features computed from pretrained Convo-
lutional Neural Networks (CNNs). Another example comes from
[9] and its use of Generative Adversarial Networks (GANs), where
the objective of the loss function is to train the model to generate
sounds that can deceive a classifier, thereby biasing the training in
a more nuanced manner than direct signal comparison.

In the context of texture sound analysis and resynthesis, this
paper has three main goals. First, we introduce TexStat, a loss
function grounded in human perception of texture sounds. This
function builds upon the pioneering work of McDermott and Si-
moncelli [4], [5], [6], and is made available as an efficient, open-
source implementation in PyTorch. Second, we present TexEnv,
a simple and efficient noise-based texture sound synthesizer devel-
oped in synergy with TexStat. Finally, to evaluate both TexStat
and TexEnv, we introduce TexDSP, a DDSP-based architecture
trained across multiple scenarios, demonstrating the effectiveness
of our proposed components.

In Section 2, we formally define the loss function TexStat
together with its potential variations. In Section 3, we briefly in-
troduce the TexEnv synthesizer, highlighting both its capabilities
and its limitations. In Section 4, we present the TexDSP archi-
tecture as a showcase for the tools introduced earlier. In Section
5, a series of experiments demonstrating the tools introduced in
this paper are presented. Finally, in Section 6, we summarize the
tools and results discussed in this work and outline some future
directions for research.

2. TEXSTAT: A LOSS FUNCTION SPECIFICALLY
TAILORED FOR TEXTURE SOUNDS

In this section, we discuss some desirable properties of a texture
sound loss function and then introduce TexStat, a loss function
specifically designed for texture sounds that fulfills, to some ex-
tent, the properties outlined here.

2.1. What Should a Texture Loss Be?

In the context of deep learning, solving a task—whatever the task
may be—is framed as an optimization problem. Such an opti-
mization problem typically involves minimizing a loss function,
with the expectation that doing so will lead to solving the proposed
task. In this scenario, the loss function must be able to represent,
to some extent, the task to be solved.

The texture sound generation task can be described as a pro-
cess in which a sound is created so that it is recognized as belong-
ing to a particular type of texture. However, it does not need to
be—and in fact, it is preferable that it is not—identical to the in-
put or dataset examples. Additionally, depending on the context, it
may also be desirable to generate non-repetitive sound over time,
with the sound generation process allowing for some degree of
temporal control.

This task description, together with our current understanding
of texture sounds, leads us to the following desirable properties for
a loss function specifically tailored for texture sounds.
Overall Structure Focus: Texture sounds resemble filtered noise
over short periods but are stable and recognizable over time. Thus,

a loss function should prioritize long-term characteristics, like
rhythm, pitch variations, or granular shifts, rather than specific and
detailed temporal structure.
Stochastic Focus: Following [1] and [8], texture sounds arise
from stochastic processes in time and timbre. A suitable loss func-
tion should capture these statistical properties to recognize simi-
larity between sounds corresponding to the same type of texture.
Perceptual Foundation: The loss function must capture percep-
tual similarity, ensuring that two sounds considered perceptually
similar are treated as such. This involves leveraging psychoacous-
tic principles to align with human auditory perception.
Time Invariance: Texture sounds can be chopped or rearranged
with minimal perceptual impact. The loss function should thus ex-
hibit time invariance, allowing rearrangement without significantly
altering the sound’s characteristics.
Noise Stability: Texture sounds can tolerate noise, so the loss
function should be robust to subtle noise variations, preserving
core texture features even with low to mid level disturbances.
Flexibility: A highly restrictive loss function risks overfitting,
leading to audio too similar to the training data. It should encour-
age creative variation, generating novel yet perceptually consistent
sounds that retain defining textural characteristics.

2.2. TexStat Formal Definition

According to Julesz’s conjecture and McDermott and Simon-
celli’s synthesis approach, the nature of textures can be understood
through direct comparison of their statistics. McDermott and Si-
moncelli’s synthesis approach [4], [5], and [6] involves the impo-
sition of a set of statistics precomputed for a given texture sound
using numerical methods, suggesting the possibility of using that
exact set of statistics as a feature vector for comparison.

In this work, we introduce TexStat, a loss function that op-
erates by directly comparing a slight variation of a superset of the
summary statistics used by McDermott and Simoncelli.

In the following, we formally introduce the necessary tools,
preprocessing steps, and sets of summary statistics related to the
computation of TexStat. For further details on summary statis-
tics’ perceptual importance, we refer to [5] and [6].
Preliminary Tools: At the core of TexStat there are a series of
subband decompositions. Following the original work of McDer-
mott and Simoncelli, we consider the following: a Cochlear Filter-
bank, which is an Equivalent Rectangular Bandwidth (ERB) filter-
bank [18], [19] F = {fj}NF

j=1 made up of NF filters; and a Modu-
lation Filterbank, which is a Logarithmic Filterbank G = {gk}NG

k=1

made up of NG filters.
Preprocessing: Given a signal s, the Cochlear filterbank F is
used to compute a subband decomposition of it by sj = s ∗ fj ,
j = 1, . . . , NF . Then, the amplitude envelope of each one of
these subbands is computed using the Hilbert Transform ej =
|sj + iH(sj)|, j = 1, . . . , NF . Finally, the Modulation Filter-
bank G is used to compute a subband decomposition of each one
of the envelopes ej , that is, mj,k = gk(ej), j = 1, . . . , NF , k =
1, . . . , NG.
Statistics sets: The first set of statistics is comprised of the first L
normalized moments of the signals ej , that is, S1,l,j = Ml(ej) for
j = 1, . . . , NF and l = 1, . . . , L, where M1(X) = E(X) = µ,
M2(X) = V (X)/µ2 = σ2/µ2 and

Ml(X) =
E(X − µ)l

σl
, l = 3, . . . , L.

DAFx.2

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

Note that the vectors S1,l ∈ RNF correspond to different mo-
ments and hence they are prone to have values that vary in orders
of magnitude. In order to fix this issue, the first set of statistics cor-
respond to a weighted concatenation of the vectors corresponding
to different moments

S1(s) = concat(α1S1,1, . . . , αNS1,L) ∈ RL·NF .

The second set of statistics corresponds to the Pearson corre-
lation between different amplitude envelopes ej , that is,

S2(s) = vech(corr(e1, . . . , eNF)) ∈ RTNF −1 ,

where vech(·) corresponds to the half-vectorization operator,
corr(·) to the correlation matrix and Tn to the n-th triangular num-
ber.

The third set of statistics corresponds roughly to the proportion
of energy in each modulation band, that is,

S3,j =

(
V(mj,1)

1/2, . . . ,V(mj,NG)1/2
)

V(ej)1/2
∈ RNG

S3(s) = concat(S3,1, . . . , S3,NF) ∈ RNG·NF .

The fourth set of statistics corresponds to the Pearson corre-
lations between modulation subbands corresponding to the same
amplitude envelope, that is,

S4,j = vech(corr(mj,1, . . . ,mj,NG)) ∈ RTNG−1

S4(s) = concat(S4,1, . . . , S4,NF) ∈ RNF ·TNG−1 .

Finally, the fifth set of statistics corresponds to the Pearson
correlation between modulation subbands corresponding to the
same band but different amplitude envelopes, that is,

S5,k = vech(corr(m1,k, . . . ,mNF ,k)) ∈ RTNF −1

S5(s) = concat(S5,1, . . . , S5,NG) ∈ RNG·TNF −1 .

Now that we have the five sets of statistics well-defined, we
can finally define the TexStat loss function.

Definition 1. (TexStat loss function) The TexStat loss func-
tion is defined as

Lα,β(x, y) =

5∑
j=1

βj · MSE(Sj(x), Sj(y)),

where α ∈ RL and β ∈ R5 are parameters, x, y are a pair of
signals, and S1(x), S2(y), . . . , S5(x), S5(y) are the summary
statistics vectors defined above.

Before continuing, it is important to mention that although the
TexStat loss function is strongly based on the work of McDer-
mott and Simoncelli, several changes and additions were made to
make it more suitable for machine learning tasks. Most of these
changes involve adaptations that ensure control over the number
of statistics and their weights during training. The number of
statistics is important, as it would be counterproductive to com-
pute more statistics than the size of the window used. Furthermore,
weighting the statistics provides a way to balance their contribu-
tion to the loss. The main changes and their impact are outlined in
Table 1.

McDermott and
Simoncelli’s
Summary Statistics

TexStat Summary
Statistics

Filterbanks Fixed type, frequency
range, and size of
filterbanks for their
experiments.

Variable type, frequency
range, and size of
filterbanks for
controllability.

Statistical
Moments

Fixed number of
statistical moments.

Variable number of
statistical moments.
Useful for compensating
small filterbanks.

Modulation
Band
Correlations

Only some
correlations are
computed.

Multiple correlations
were avoided in the
original work for
computational efficiency;
however, with modern
GPU computations, this
doesn’t make a significant
difference.

Compressive
Non-linearity

Applies one to the
amplitude envelopes
following past
auditory models.

Removes compressive
non-linearity for gradient
stability.

Weights Summary statistics
are not weighted.

Variable weights to
control the importance of
certain sets of statistics
during training and to
avoid overflow (especially
in S1).

Table 1: Summary statistics comparison between McDermott and
Simoncelli’s work, and those used by TexStat.

2.3. TexStat Properties

As discussed in Subsection 2.1, there are several desirable proper-
ties that a texture sound loss function should have, and we argue
that, when used correctly, TexStat addresses them all.
First, TexStat can be utilized on arbitrarily large frames of au-
dio, and in any case, all summary statistics are directly influenced
by the entire signal, which we argue implies a focus on the overall
structure. Moreover, since it is built on a statistical and perceptual
model, we also argue that its focus is on the stochastic properties
of the signal, and that it has a strong foundation in perception.
Overall, one could argue that the operations involved in the com-
putation of summary statistics are quite stable with respect to the
addition of low-amplitude white noise. This will be empirically
demonstrated in Subsection 5.1. Moreover, if s ∈ C(R) is a con-
tinuous infinite signal whose summary statistics exist (for exam-
ple, if it belongs to the Schwarz class s ∈ S(R)), there are no
operations in the process of computing S1(s), . . . , S5(s) that can
be affected by time shifting, i.e., ŝ(t) = s(t − t0). This is, of
course, not the case for discrete finite signals, where time shifting,
ŝ[t] = s[t− t0 mod len(s)], might introduce a click sound at the
beginning, which would affect the spectrum and, consequently, the
subband decomposition. However, this is not a significant issue for
noisy signals, as adding a click will not strongly impact their spec-
trum. This will also be further explored in Subsection 5.1.

DAFx.3

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

Finally, given a choice of parameters that does not generate an
excessive number of summary statistics in relation to the samples
used in the original signal, there are generally many signals that,
when compared using TexStat, will result in low loss values.
For example, all chopped and reordered versions of the same signal
will typically yield similar summary statistics, and hence would be
close in the sense of the TexStat distance. We claim that this
suggests flexibility for the TexStat loss function.

2.4. Capabilities and Limitations

The TexStat loss function is based on the direct comparison
of summary statistics, meaning that two sounds whose summary
statistics are similar will not be recognized as different by this loss
function. In their original work, McDermott and Simoncelli im-
posed the summary statistics of a series of sounds onto white noise
and found that, although they successfully synthesized a range of
sounds with good results, this process was unable to generate con-
vincing sounds for certain types of timbres. This was because the
summary statistics were not sufficient to fully characterize those
types of sounds. Regarding the sounds that couldn’t be fully cap-
tured by the summary statistics, McDermott and Simoncelli stated
that "they fall into three general classes: those involving pitch (e.g.,
railroad crossing, wind chimes, music, speech, bells), rhythm (e.g.,
tapping, music, drumming), and reverberation (e.g., drumbeats,
firecrackers)." These capabilities and limitations are naturally in-
herited by the TexStat loss function, and both effective and inef-
fective examples are shown in Subsection 5.5 to make transparent
this loss’ limitations.

2.5. Usage as a Loss and/or Evaluation Metric

The TexStat loss function introduced here is differentiable,
making it suitable for use as a loss function in machine learning
applications. Moreover, together with this article we release an
efficient and open-source PyTorch implementation.

The number of computations required to run both TexStat
and its gradients are relatively large compared to other loss func-
tions, such as the Multi-Scale Spectral (MSS) Loss function. How-
ever, this can be mitigated by adjusting the frame size, as summary
statistics are intended to be used on large audio frames. For exam-
ple, most models evaluated in Section 5.5 used a frame size cor-
responding to approximately 1.5 seconds of audio at a framerate
of 44100 Hz. In contrast, architectures like NoiseBandNets [17]
use the MSS on frames of up to 0.18 seconds. Additionally, the in-
creased computational cost also comes with higher memory usage,
especially when increasing NF and NG, which can significantly
impact memory requirements.

Given the timbre limitations of the summary statistics dis-
cussed earlier, we believe that, in order to fully guide the learning
process of a general generative model, additional losses should be
introduced to exert full control over different types of sounds, such
as pitched or rhythmic sounds. In such cases, TexStat can be re-
garded as a regularizer that aids in guiding the timbre learning of
texture sounds.

In some instances, TexStat may not be suitable as a loss
function for the reasons mentioned earlier. In these cases, one can
use other losses to guide the learning process and, if appropriate
for the task, employ either TexStat as an evaluation metric. To
facilitate this, we propose a fixed set of parameters, including fil-
terbank types, filterbank sizes, and values for α and β, which have

been proven useful for texture sound synthesis in the past and that
were tested in this article’s experiments. These parameters ensure
comparability, and we also provide a list of precomputed values
for interpretability. All of this can be found in the repository for
the TexStat loss function. Moreover, since the TexStat loss
function is essentially a direct comparison of summary statistics,
one could view this set of statistics as a fully interpretable feature
vector. This feature vector can thus be used as the basis for other
evaluation metrics, such as Frechet Audio Distance (FAD) [20].

Our repository comes with a simple to use implementation of
this method that uses a subset of the summary statistics here pro-
posed and extensive experimentation to prove this concept can be
found in Subsections 5.3 and 5.5.

3. TEXENV: A DIFFERENTIABLE SIGNAL PROCESSOR
TAILORED FOR TEXTURE SOUNDS

The foundations of TexStat are based on the idea that summary
statistics of amplitude envelopes derived from a low-size filterbank
subband decomposition are sufficient to compare certain types of
texture sounds. Implicit in this concept is the fact that directly im-
posing amplitude envelopes on a subband decomposition of white
noise is one method of resynthesizing texture sounds while pre-
serving their summary statistics. In the context of this work, two
questions arise: How can we efficiently and differentiably create
amplitude envelopes from a sequence of parameters? How can we
efficiently and differentiably impose amplitude envelopes?

Creating amplitude envelopes from scratch can be done in
multiple ways. For this synthesizer, we chose to use the Inverse
Fast Fourier Transform (IFFT) because it is differentiable and can
be computed efficiently to generate cyclic functions. For the im-
position process, we fixed precomputed white noise, decomposed
it using a filterbank, and then normalized the amplitude envelope
of each subband. This procedure generates an object we call the
seed, which serves as a "source of deterministic randomness" and
can be used to impose amplitude envelopes via simple multiplica-
tion. Algorithm 1 outlines this synthesis method.

Algorithm 1 The TexEnv Synth

Input: Let F be a filterbank of size NF , (s1, . . . , sNF) a seed
generated from F , p1, . . . , pNF ∈ CNP a set of complex vector
parameters and N the length of the signal to be generated.
Output: A texture sound synthesized y ∈ RN .

1: For each j = 1, . . . , NF construct a spectrum as

Aj = concat(pj,0, . . . , pj,NP−1),0, (pj,NP−1, . . . , pj,1)),

where 0 is a null vector of size N − 2NP + 1.
2: For each j = 1, . . . , NF construct a real signal using the In-

verse Discrete Fourier Transform (IDFT)

aj = IDFT(Aj).

3: Impose the signals a1, . . . , aNF as amplitude envelopes on the
seed and sum up to generate the final signal

y =

NF∑
j=1

sj ⊙ aj .

4: return The synthesized signal y.

DAFx.4

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

4. TEXDSP: A DDSP-BASED ARCHITECTURE
TAILORED FOR TEXTURE SOUNDS

In this section we introduce TexDSP, a relatively simple texture
sound generative model based on DDSP [21] that showcases the
capabilities of TexStat and TexEnv.

The original DDSP model requires an encoder, decoder, sig-
nal processor, and loss function, with each component designed
to generate small frames of pitched sounds based solely on pitch
and loudness features. However, in the context of texture sound
generation, the task is quite different, necessitating several mod-
ifications. The changes we propose ensure that the model’s ob-
jective is to learn high-level statistical patterns, rather than aiming
for perfect (frequency domain) reconstruction, as is the case with
the original DDSP architecture. The final architecture is shown in
Figure 1, and the changes made are briefly outlined here.

4.1. Encoder and Decoder

As in the original DDSP architecture, the encoding process in-
volves both feature extraction and a more complex transformation
of these features. In this case, we used different pairs of features
that can be more informative for texture sounds than pitch and
loudness. These features include spectral mean (frequency cen-
troid), spectral standard deviation, energy in each band of a sub-
band decomposition, and onset rate. To increase the complexity of
the feature extraction process, we followed the original approach:
first, we applied a Multi-Layer Perceptron (MLP) to each feature
Fj = MLP(fj | εenc

j), and then concatenated the results with the
output of a Gated Recurrent Unit (GRU) applied to the same fea-
tures Z = GRU(F1, F2 | φ), yielding the latent representation
L = concat(F1, F2, Z). The decoding process involves trans-
forming the latent representation L through another MLP and an
additional layer to obtain a polar representation of the parameters
used by the signal processor, i.e.,

ρ = σ(A · MLP(L | εdec))

θ = 2πσ(B · MLP(L | εdec))

where A,B are real-valued matrices to be learned, and σ(·) de-
notes the sigmoid function applied component-wise.

4.2. Signal Processor and Loss Function

The original DDSP model used a Spectral Modeling Synthesis
(SMS) [22] synthesizer, which is well-suited for pitched sounds,
and a Multi-Scale Spectrogram (MSS) Loss, which is effective for
perfect reconstructions. Since the goal of this architecture is to test
the capabilities of TexStat, we opted for our signal processor,
as it was designed to work synergistically with our loss function.
Both TexEnv and TexStat are built around a filterbank, and to
optimize synergy, this filterbank is shared between the two.

5. EXPERIMENTS AND RESULTS

In this section, we briefly explain a series of experiments con-
ducted to provide proof of concept for the models proposed in
this work. For these experiments, we hand-curated MicroTex1,
a dataset made from a selection of texture sounds from the follow-
ing sources: the BOReilly dataset, containing textures made using

1MicroTex HuggingFace repository: cordutie/MicroTex.

analog synthesizers; Freesound [23], which contains environmen-
tal sounds; and synthetically generated data using Syntex [24]. All
experiments can be found in their respective repositories and are
fully replicable2.

5.1. TexStat Properties Tests

Two desirable properties proposed for a loss function tailored to
texture sounds are stability under time shifting and robustness to
added noise. To test these properties in the TexStat loss func-
tion, we computed the loss between the sounds in the Freesound
class of MicroTex and their corresponding transformations us-
ing various parameters. We focused on the Freesound class of
MicroTex, as it contains the most representative examples of en-
vironmental texture sounds and includes recordings that are long
and dynamic enough to allow meaningful time shifting and noise
addition. The other two classes were excluded, as their sounds are
either too short or too silent, making such transformations imprac-
tical without introducing substantial alterations. The experiment
was also run with the MSS loss for comparison and some of the
results can be found in Table 2.

TexStat MSS

Transformation 10% 30% 50% 10% 30% 50%

Time-Shift
0.04
± 0.03

0.04
± 0.03

0.04
± 0.03

6.09
± 1.22

6.27
± 1.38

6.29
± 1.41

Noise-Add
2.08
± 1.99

2.51
± 2.21

2.65
± 2.27

11.79
± 4.91

16.84
± 5.92

19.57
± 6.26

Table 2: Loss measurements (µ ± σ) between sounds in the
Freesound class of MicroTex and their corresponding time-
shifted and noise-added transformations. Time shift is expressed
as a percentage of the total signal duration, and noise percentage
are defined by their maximum amplitude relative to the original
signal. All measurements were computed over one-second seg-
ments for each of the sounds mentioned above. For reference, all
satisfactory models trained using TexStat converged to loss val-
ues below 3, whereas evaluations using MSS typically yield rea-
sonable values below 10.

The results demonstrate that TexStat exhibits strong stabil-
ity under both time shifting and noise addition, incurring a consis-
tent penalty for time shifts and a sublinear increase in penalty as
noise levels increases.

5.2. TexStat Benchmarks

To benchmark the computational requirements of TexStat, we
evaluated its computation time, gradient descent time, and GPU
memory usage. These measurements were conducted multiple
times, recording the time taken for loss computation and optimiza-
tion while tracking memory allocation. The results are presented
in Table 3, along with the values for other typical losses.

The results show that, as expected, the TexStat loss function
is slower than other less specific losses, but it uses a similar amount
of memory.

2Find access to all repositories, experiments and sound examples in this
article’s webpage: cordutie.github.io/ddsp_textures/.

DAFx.5

https://huggingface.co/datasets/cordutie/MicroTex
https://cordutie.github.io/ddsp_textures/

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

Target Texture
Sound Feature

Extractor
Encoder Decoder

Synthesizer
Output Texture

Sound

Seed

 loss function

Figure 1: TexDSP architecture. Prechosen features are computed and are used to run the model. The encoder adds complexity and
entangles this features into the latent representation L = (F1, F2, Z). The decoder transforms this representation into a set of complex
parameters that are used to run the TexEnv synthesizer. Finally, the output signal is compared to the original one using the TexStat loss
function.

Loss Forward pass
time (ms)

Backward pass
time (ms)

Memory usage
(mb)

TexStat 93.5± 0.4 154.6± 0.4 0.84± 2.5

MSS 3.9± 0.3 8.5± 0.3 0.85± 2.6

MSE 0.2± 0.3 0.2± 0.1 1.7± 5.0

MAE 0.1± 0.0 0.2± 0.1 0.8± 2.5

Table 3: Measurements regarding computation time, gradient
computation time, and memory usage (µ±σ) in batches of 32 sig-
nals of size 65536 (around 1.5s at a sample rate of 44100Hz). The
losses studied were TexStat, Multi-Scale Spectrogram (MSS),
Mean Squared Error (MSE), and Mean Absolute Error (MAE).
All measurements were done using CUDA on an RTX 4090 GPU.

5.3. TexStat as an Evaluation Metric

In order to test TexStat summary statistics as a powerful rep-
resentation that can be used in metrics like FAD, we conducted
the following experiment. First, all data in the three selections of
the MicroTex dataset were segmentated and both their summary
statistics and VGGish [25] embeddings were computed. Then,
a downstream classifier (MLP with hidden layers 128, 64) was
trained in both cases. A summary of the results can be found in
Table 4.

Model Selection Accuracy Precision Recall F1

TexStat BOReilly 0.94 0.94 0.94 0.94

VGGish BOReilly 0.71 0.73 0.71 0.71

TexStat Freesound 0.99 0.99 0.99 0.99

VGGish Freesound 0.98 0.99 0.98 0.98

TexStat Syntex 1.0 1.0 1.0 1.0

VGGish Syntex 0.95 0.95 0.95 0.94

Table 4: Classification performance of equivalent models trained
on both our proposed feature vector and VGGish embeddings.

The results indicate that in the context of texture sounds, sum-
mary statistics are strictly more informative than general-purpose
embeddings such as VGGish.

5.4. Texture resynthesis using TexEnv

Extensive exploration using the TexEnv synthesizer in resynthe-
sis tasks employing a signal processing-based parameter extractor
was conducted to better understand its limitations and overall be-
havior. A summary of sound examples can be found on this arti-
cle’s webpage. Some of our key findings were as follows: water-
like sounds such as flowing water, rain, and continuous bubbling
do not benefit from larger parameter sets, but do benefit from larger
filterbanks. In contrast, crackling sounds like fireworks or bonfires
benefit from larger parameter sets, but not as much from larger fil-
terbanks. These insights were crucial in determining the optimal
parameters for the models trained later.

5.5. TexDSP Trained Models

To showcase the capabilities of TexStat, we trained a set of
TexDSP models using different parameters, with TexStat as
the sole loss function to guide the learning process. The details
and results for some of these models are presented below.
Training Details: A curated set of sounds representing different
classes of texture sounds from Freesound was used for each model.
Each model employed different parameters tailored to the specific
texture type. These parameters were chosen based on the resyn-
thesis exploration discussed in Subsection 5.4. The number of lay-
ers in the MLPs for both the encoder and decoder was limited to a
maximum of 3, with the number of parameters capped at 512. This
configuration ensured that the resulting models, even when com-
bined with the seed used for the filterbank, remained under 25 MB
and could, if necessary, be ported to a real-time environment. The
TexStat α and β parameters were set to the default values pro-
posed in our repository, and all models used the same optimizer,
training for up to 1500 epochs with early stopping enabled. Addi-
tionally, for each TexDSP model trained, a corresponding Noise-
BandNet model was also trained using default parameters for com-
parison.
Validation Method: To evaluate model performance, we resyn-
thesized a subset of the dataset, excluded from training, for both
the TexStat and NoiseBandNet models. We then segmented the
original and resynthesized signals, and measured Fréchet Audio
Distance (FAD) using both VGGish embeddings and our custom
summary statistics, along with frame-level TexStat and MSS
losses. For the latter, we report the mean and standard deviation
across all segments. Results are presented in Table 5.

DAFx.6

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

FAD Loss metrics

Texture
Sound

VGGish
TexDSP

VGGish
NoiseBandNet

Ours
TexDSP

Ours
NoiseBandNet

TexStat
TexDSP

TexStat
NoiseBandNet

MSS
TexDSP

MSS
NoiseBandNet

Bubbles 35.20 21.37 1.86 1.15 1.2± 0.3 0.7± 0.1 6.6± 0.3 4.7± 0.1

Fire 11.86 2.53 6.14 1.52 2.8± 2.1 1.7± 1.0 9.6± 1.3 4.5± 0.2

Keyboard 13.02 9.70 16.64 277.12 5.7± 2.0 20.0± 7.7 9.1± 0.7 13.8± 0.6

Rain 9.09 11.31 0.98 6.19 0.5± 0.2 2.4± 2.0 9.0± 0.2 9.1± 0.4

River 43.66 49.85 0.80 1.75 0.5± 0.1 0.6± 0.1 6.0± 0.6 6.7± 0.3

Shards 4.64 1.36 3.79 7.58 1.0± 0.2 1.1± 0.3 7.9± 0.2 8.8± 0.2

Waterfall 18.23 25.88 0.53 1.06 0.3± 0.0 0.4± 0.0 5.0± 0.0 6.3± 0.0

Wind 9.66 31.35 1.95 8.48 0.8± 0.5 1.1± 0.7 5.6± 0.1 5.8± 0.2

Table 5: Validation metrics for both a TexDSP and a NoiseBandNet model trained on different textures. FAD metrics (lower is better) use
VGGish and our proposed feature vector. Additionally, TexStat and MSS loss metrics are reported with means and standard deviations.
In all metrics smaller is better and the best performer is highlighted in bold. (1)Energy bands were imposed post-resynthesis. (2)A loudness
tracker was added post-resynthesis.

Results: The results highlight three key observations. First, per-
formance varied across models, reflecting patterns observed in
McDermott and Simoncelli’s work and aligning with the limita-
tions discussed in Subsection 2.4. Second, although some models
performed adequately, their scores remained lower than those of
the reconstruction focused model NoiseBandNet. This outcome
is expected, as our approach prioritizes the disentanglement of
higher-level sound structures over precise reconstruction, an aspect
favored by the evaluation metrics used. The latter being said, sur-
prisingly some TexDSP models managed to beat its counterpart
even in these metrics. Third, the metrics derived from our mod-
els appear to align more closely with our own perception of sound
quality. However, to support this claim more robustly, a subjective
evaluation would be necessary—an analysis that was beyond the
scope of this work.
Additional Comments: A widely recognized application of the
original DDSP model was timbre transfer [21], where features
such as pitch and loudness from an unexpected input sound are
used to drive a model trained on a different instrument’s timbre.
For instance, applying the features of a voice recording to a violin-
trained model will generate output that sounds like a violin play-
ing the same melody. This effect is primarily due to the strong
inductive bias of the model, which is trained exclusively on vio-
lin sounds and thus can only synthesize violin-like audio. Since
the model operates on extracted features rather than raw audio, it
naturally generates ("transfer") the timbre it was trained to pitch
and loudness content extracted from the source sound, though this
effect diminishes when pitch is less relevant.

In the models developed in this article, the same principle ap-
plies, though with less clear-cut results. These models retain the
DDSP architecture’s bias but are designed for a wider range of
sounds. For example, a fire sound can be processed by a water-
trained model, resulting in a form of timbre transfer. However,
unlike the pitched case, the results are harder to interpret be-
cause pitch and loudness are more meaningful for musical sounds.
For texture-based sounds, meaningful timbre transfer occurs only
when the input and output share a key feature from the training
data. While spectral centroid and rate might seem like viable fea-
tures, they lack pitch’s distinctiveness in musical contexts. Many
examples of this effect are available on the article’s webpage.

6. CONCLUSIONS

This paper introduced a novel framework for advancing the analy-
sis and synthesis of texture sounds through deep learning. Central
to our contribution is TexStat, a loss function grounded in au-
ditory perception and statistical modeling. By explicitly encoding
key properties such as time invariance, perceptual robustness, and
long-term structural focus, TexStat provides a formulation that
is better aligned with the inherent nature of texture sounds than
conventional alternatives.

In addition to TexStat, we presented two complementary
tools: TexEnv, a signal processor that efficiently generates tex-
ture audio via amplitude envelope imposition, and TexDSP, a
DDSP-based model that demonstrates the effective integration of
our proposed loss into a synthesizer framework.

Our experiments validated the theoretical motivations and
practical utility of TexStat. Specifically, when used as a fea-
ture vector, the summary statistics derived from TexStat outper-
formed general-purpose embeddings like VGGish in classification
tasks. Moreover, TexStat exhibited improved stability against
transformations such as time shifting and noise addition, provid-
ing a perceptually coherent metric for evaluating resynthesis tim-
bre similarity.

We also demonstrated the successful application of TexStat
as a loss function in training the TexDSP model, where it guided
the learning process to generate indefinitely long sequences of con-
trollable texture sounds. Although the synthesized textures dif-
fered from the input sounds, they maintained the essential percep-
tual qualities that define their type. Despite its strengths, we ac-
knowledge limitations in handling pitched or rhythmically struc-
tured content, suggesting that TexStat is most effective when
combined with other losses as a regularization component or used
as an evaluation metric.

Future work should extend TexStat to hybrid tasks by incor-
porating additional loss terms for pitched and/or rhythmic sounds,
and explore its applications in generative modeling, texture trans-
formation, and neural sound design. Overall, this framework rep-
resents a promising step toward achieving better perceptual align-
ment in machine listening and synthesis tasks.

DAFx.7

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

7. ACKNOWLEDGMENTS

This work has been supported by the project "IA y Música: Cá-
tedra en Inteligencia Artificial y Música (TSI-100929-2023-1)",
funded by the "Secretaría de Estado de Digitalización e Inteligen-
cia Artificial and the Unión Europea-Next Generation EU".

8. REFERENCES

[1] Bela Julesz, “Visual pattern discrimination,” IRE Transac-
tions on Information Theory, vol. 8, no. 2, pp. 84–92, Feb.
1962.

[2] Terry Caelli and Bela Julesz, “On perceptual analyzers un-
derlying visual texture discrimination: Part i,” Biological
Cybernetics, vol. 28, no. 3, pp. 167–175, Sep. 1978.

[3] Anne Humeau-Heurtier, “Texture feature extraction meth-
ods: A survey,” IEEE Access, vol. 7, pp. 8975–9000, 2019.

[4] Josh H. McDermott, Andrew J. Oxenham, and Eero P. Si-
moncelli, “Sound texture synthesis via filter statistics,” in
2009 IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics, New Paltz, NY, October 2009.

[5] Josh H. McDermott and Eero P. Simoncelli, “Sound texture
perception via statistics of the auditory periphery: evidence
from sound synthesis,” Neuron, vol. 71, no. 5, pp. 926–940,
2011.

[6] Josh H. McDermott, Michael Schemitsch, and Eero P. Si-
moncelli, “Summary statistics in auditory perception,” Na-
ture Neuroscience, vol. 16, no. 4, pp. 493–498, 2013.

[7] Nicholas Saint-Arnaud, “Classification of sound textures,”
M.S. thesis, Massachusetts Institute of Technology, Cam-
bridge, MA, Sep. 1995.

[8] D.F. Rosenthal, H.G. Okuno, H. Okuno, and D. Rosenthal,
Computational Auditory Scene Analysis: Proceedings of the
Ijcai-95 Workshop, CRC Press, 1st edition, 1998.

[9] Lonce Wyse, “An audio texture lutherie,” Annual Art Jour-
nal, vol. 43, no. 54, 2022.

[10] Garima Sharma, Karthikeyan Umapathy, and Sridhar Krish-
nan, “Trends in audio texture analysis, synthesis, and appli-
cations,” J. Audio Eng. Soc., vol. 70, no. 3, pp. 108–127,
March 2022.

[11] Nicolas Saint-Arnaud and Kris Popat, “Analysis and synthe-
sis of sound textures,” in Readings in Computational Audi-
tory Scene Analysis, pp. 125–131. 1995.

[12] S. Dubnov, Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and
M. Werman, “Synthesizing sound textures through wavelet
tree learning,” IEEE Computer Graphics and Applications,
vol. 22, no. 4, pp. 38–48, 2002.

[13] Diemo Schwarz, Data-Driven Concatenative Sound Synthe-
sis, Ph.D. thesis, Université Paris 6 – Pierre et Marie Curie,
Paris, France, 2004.

[14] Agostino Di Scipio, “The synthesis of environmental sound
textures by iterated nonlinear functions, and its ecological
relevance to perceptual modeling,” Journal of New Music
Research, vol. 31, no. 2, pp. 109–117, 2002.

[15] James F. O’Brien, Chen Shen, and Christine M. Gatchalian,
“Synthesizing sounds from rigid-body simulations,” in ACM
SIGGRAPH/Eurographics Symposium on Computer Anima-
tion, 2002, pp. 175–181.

[16] Hugo Caracalla and Axel Roebel, “Sound texture synthe-
sis using convolutional neural networks,” in Proceedings of
the 22nd International Conference on Digital Audio Effects
(DAFx-19), Birmingham, UK, September 2019.

[17] Adrián Barahona-Ríos and Tom Collins, “Noisebandnet:
Controllable time-varying neural synthesis of sound effects
using filterbanks,” IEEE/ACM Trans. Audio, Speech and
Lang. Proc., vol. 32, pp. 1573–1585, Feb. 2024.

[18] Brian C. Moore and Brian R. Glasberg, “Suggested formu-
lae for calculating auditory-filter bandwidths and excitation
patterns,” The Journal of the Acoustical Society of America,
vol. 74, no. 3, pp. 750–753, 1983.

[19] Roy Patterson, Ian Nimmo-Smith, John Holdsworth, and Pe-
ter Rice, “An efficient auditory filterbank based on the gam-
matone function,” in Speech-Group Meeting of the Institute
of Acoustics on Auditory Modelling, RSRE, Malvern, Dec.
1987, Institute of Acoustics, Meeting held on December 14–
15, 1987.

[20] Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, and
Matthew Sharifi, “Frechet audio distance: A reference-free
metric for evaluating music enhancement algorithms,” in IN-
TERSPEECH 2019, Graz, Austria, September 2019, ISCA.

[21] Jesse Engel, Lalit Hantrakul, Chenjie Gu, and Adam Roberts,
“Ddsp: Differentiable digital signal processing,” in Interna-
tional Conference on Learning Representations, 2020.

[22] Xavier Serra and Julius Smith, “Spectral modeling synthesis:
A sound analysis/synthesis system based on a deterministic
plus stochastic decomposition,” Computer Music Journal,
vol. 14, no. 4, pp. 12–24, 1990.

[23] Frederic Font, Gerard Roma, and Xavier Serra, “Freesound
technical demo,” in Proceedings of the 21st ACM Inter-
national Conference on Multimedia, New York, NY, USA,
2013, MM ’13, p. 411–412, Association for Computing Ma-
chinery.

[24] Lonce Wyse and Prashanth Thattai Ravikumar, “Syntex:
parametric audio texture datasets for conditional training of
instrumental interfaces.,” in Proceedings of the International
Conference on New Interfaces for Musical Expression, The
University of Auckland, New Zealand, jun 2022.

[25] Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis,
Jort F. Gemmeke, Aren Jansen, R. Channing Moore, Manoj
Plakal, Devin Platt, Rif A. Saurous, Bryan Seybold, Malcolm
Slaney, Ron J. Weiss, and Kevin Wilson, “Cnn architectures
for large-scale audio classification,” in 2017 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), 2017, pp. 131–135.

DAFx.8

	1 Introduction
	2 TexStat: A Loss Function Specifically Tailored for Texture Sounds
	2.1 What Should a Texture Loss Be?
	2.2 TexStat Formal Definition
	2.3 TexStat Properties
	2.4 Capabilities and Limitations
	2.5 Usage as a Loss and/or Evaluation Metric

	3 TexEnv: A Differentiable Signal Processor Tailored for Texture Sounds
	4 TexDSP: A DDSP-Based Architecture Tailored for Texture Sounds
	4.1 Encoder and Decoder
	4.2 Signal Processor and Loss Function

	5 Experiments and Results
	5.1 TexStat Properties Tests
	5.2 TexStat Benchmarks
	5.3 TexStat as an Evaluation Metric
	5.4 Texture resynthesis using TexEnv
	5.5 TexDSP Trained Models

	6 Conclusions
	7 Acknowledgments
	8 References

