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ABSTRACT

Recent studies on classifying electric guitar effects have achieved
high accuracy, particularly with deep learning techniques. How-
ever, these studies often rely on simplified datasets consisting
mainly of single notes rather than realistic guitar recordings.
Moreover, in the specific field of effect chain estimation, the lit-
erature tends to rely on large models, making them impractical for
real-time or resource-constrained applications. In this work, we
recorded realistic guitar performances using four different guitars
and created three datasets by applying a chain of five effects with
increasing complexity: (1) fixed order and parameters, (2) fixed or-
der with randomly sampled parameters, and (3) random order and
parameters. We also propose a novel Neural Architecture Search
method aimed at discovering accurate yet compact convolutional
neural network models to reduce power and memory consumption.
We compared its performance to a basic random search strategy,
showing that our custom Neural Architecture Search outperformed
random search in identifying models that balance accuracy and
complexity. We found that the number of convolutional and pool-
ing layers becomes increasingly important as dataset complexity
grows, while dense layers have less impact. Additionally, among
the effects, tremolo was identified as the most challenging to clas-
sify.

1. INTRODUCTION

Guitar effects are crucial in shaping the sound of a guitarist, a
musical piece, or an entire genre. Detecting guitar effect chains
can help musicians replicate specific tones and assist producers
in crafting genre-specific tracks or analyzing guitarists’ unique
sounds. This knowledge could also enhance Music Information
Retrieval (MIR) tasks like genre recognition [1], music tagging [2],
emotion recognition [3], and transcription [4]. However, guitar ef-
fect identification is less explored compared to other MIR tasks,
with Deep Learning (DL)-based approaches emerging only re-
cently [5–8].

One of the most significant contributions in this space is re-
ported in [9], where the task of recognizing a single guitar effect
is treated as a multiclass classification problem and solved using
Support Vector Machines (SVM). The authors also introduced a
new dataset comprising monophonic and polyphonic guitar and
bass recordings processed with a single effect. A more recent ap-
proach uses a CNN to classify guitar effects, as described in [5]. In
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this study, the authors processed non-linear guitar effects, such as
overdrive, distortion, and fuzz, using clean audio samples from [9].
A different approach was presented in [6], where two paradigms
were implemented, one based on shallow neural networks, and the
other based on SVM; the authors created their dataset by process-
ing clean guitar samples from [9].

Concerning the classification of chains of guitar effects, the
authors of [10] proposed a method for classifying sequences of
three guitar effects. Two effects were considered for each posi-
tion (a position could be empty), resulting in a total of 27 possible
combinations.

One limitation of the works above lies in the simplicity of the
datasets, which consist mainly of single notes rather than realis-
tic guitar recordings. This limitation is addressed by the authors
of [7], who also include a more realistic dataset (although com-
posed of acoustic guitar recordings) in their work. Their main con-
tribution is the proposal of a new approach for classifying chains
of guitar effects using a multi-label strategy, where the presence
or absence of a specific effect is encoded in binary label vectors.
They compare four different CNN models for classification, lim-
iting their analysis to a fixed order of effects and fixed parameter
values.

In [11], the authors focused on classifying and estimating the
parameters of a chain of three specific audio effects in a fixed or-
der: distortion, tremolo, and delay. They further increased the
task complexity by mixing the guitar signal with other instrument
tracks. The authors of [12] proposed a method based on an au-
toencoder to blindly estimate the presence of three effects, focus-
ing their analysis on an equalizer, compressor, and clipper. In [8],
the authors estimate the effect chain and recover the original audio
signal, focusing on four guitar effects. While their objective aligns
with ours to some extent, a key distinction is that our work prior-
itizes the development of highly compact models, which is not a
focus of their study. Similarly, outside the domain of guitar effects
recognition, [13] proposed a model for blind estimation of audio
processing graphs using a CNN encoder and a Transformer-based
decoder. Although their model rarely achieved perfect reconstruc-
tion of the original graph, the rendered audio remained perceptu-
ally similar. While their results are notable, also in this case their
approach does not emphasize compact models, making it difficult
to directly compare with our work.

When it comes to using CNNs, a key challenge is design-
ing optimal architectures, especially with limited baseline models.
Neural Architecture Search (NAS) tackles this by automatically
exploring hyperparameter space using metaheuristics such as Evo-
lutionary Algorithms (EAs), inspired by evolutionary principles.

Most of the literature on EA-based NAS currently focuses
on tuning CNN models for image classification, with only a few
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studies having explored the use of Evolutionary Algorithms (EAs)
for automatically tuning hyperparameters of CNNs for audio and,
more in general, time series data [14–16]. To the best of our knowl-
edge, no research has focused thus far on applying EAs to find
optimal models for electric guitar effect classification.

In this paper, we enrich the availability of guitar effect data
by proposing three novel datasets of unique guitar improvisations,
processed through chains of digital guitar effects plugins, that vary
in order and parameters. We also introduce a method to automat-
ically discover highly compact models using a custom implemen-
tation of Genetic Algorithms (GAs), comparing the results with a
Random Search (RS) strategy. Finally, we compare our compact
models with the one proposed in [5], the only effect classifica-
tion model in the literature that shares the characteristic of reduced
memory and power consumption, characterized by a small number
of parameters, making it comparable to the models in our work.

2. MATERIALS AND METHODS

This Section describes three new datasets1 of processed guitar au-
dio tracks and presents our methodology for achieving the multi-
label classification of a chain of guitar effects through an NAS
approach.

2.1. Datasets

Two right-hand techniques and two different pick-up positions
were used for each of the four electric guitars considered for the
creation of the three datasets, namely the Paul Reed Smith Custom
SE, the Epiphone Les Paul, the Fender Squier Stratocaster, and
the Fender Squier Telecaster. For the pickups, we selected two
positions for each guitar: the neck and the bridge. As for the right-
hand techniques, we adopted two approaches: using a plectrum,
also known as a pick, and finger-picking.

A professional guitarist with 20 years of musical experience
was involved in the recordings. In total, 400 guitar tracks were
recorded, with 100 tracks for each guitar. Each track has a
fixed duration of 11.5 s and features a unique guitar improvisation
that predominantly utilizes the pentatonic scale (but also diatonic
scales), which is the scale that, statistically, is the most commonly
used by guitarists. The four guitars were recorded considering all
the possible keys, and the improvisations were performed through
all the guitar neck positions.

The guitars were recorded directly via an Audient iD22 inter-
face at a sampling rate of 44 100 Hz and 16-bit depth. Tracks were
recorded using Reaper, normalized in loudness, and exported. File
names encoded details like guitar type, pickup position, and tech-
nique (e.g., tele_bridge_pick19.wav).

Each guitar track was processed with up to five effects in cas-
cade, namely: overdrive, chorus, tremolo, delay, and reverb. For
each unprocessed guitar track, all the possible combinations of
these five effects were considered. In particular, we created three
different datasets with increasing complexity in terms of order and
configuration of the effects, which are described in detail in the
following.

DS #1 The first dataset considers a fixed sequence of guitar ef-
fects. In this case, the order was chosen according to the general

1Available at:https://doi.org/10.5281/zenodo.7871720

Effect Parameter DS #1 DS #2 DS #3

Overdrive Gain 0.5 0.2 - 1.0 0.2 - 1.0
Chorus Mix 0.5 0.2 - 0.5 0.2 - 0.5
Tremolo Rate 4 2 - 10 2 - 10
Delay Time 0.5 0.3 - 0.6 0.3 - 0.6
Reverb Room 0.5 0.2 - 0.7 0.2 - 0.7

Table 1: Effects’ parameters with their corresponding range. For
every effect, the range is in [0, 1], except for the tremolo whose
possible values range between 0.1 and 20 and are expressed in Hz.

rules that a guitarist usually considers when defining the config-
uration of his/her guitar effects. Obviously, there is no absolute
rule for their order of applications and for their configuration, but
we may say that there are some conventions to be followed when
dealing with a cascade of effects. A plausible sequence was de-
termined to be: overdrive, chorus, tremolo, delay, and reverb. An-
other constraint of DS #1 concerns the effects’ parameters. For
this dataset, a predefined value for each parameter was chosen ac-
cording to the default value of each effect (see Table 1). All the
plugins we used to implement guitar effects for dataset creation
are freely available. For the chorus, delay, and reverb effects, we
used the implementation provided by the pedalboard library by
Spotify. The overdrive was The Klone By Fazertone, a simulation
of the Klon Centaur overdrive, and the tremolo was the Mtremolo
by MeldaProduction.

DS #2 The second dataset overcomes the limitation of DS #1
by considering variability in the most relevant parameter of each
effect. As said, guitar effects typically have multiple knobs in their
circuit, each having a different impact in terms of relevance on the
final sound. For example, most of the time, the overdrive presents
three parameters, but one of those (the gain) is by far more relevant
than the other two (tone and volume) in characterizing its specific
timbre. For this dataset, the specific value of the main parameter
of each effect was randomly sampled as a continuous value from
a uniform distribution in a predefined range, for a total of 6400
values for each effect. These ranges were carefully tuned based
on informal perceptual tests (see Table 1). This dataset makes the
classification task more complex, keeping the constraint of having
a predefined sequence of guitar effects in the chain.

DS #3 The limitation of DS #2 is addressed in the third dataset,
which also considers a variable order of effects in the chain. From
an implementation perspective, the first step in constructing this
dataset involved including all possible combinations of the five ef-
fects for each audio file, as was done for DS #2. Then, the effects’
positions were shuffled before processing each guitar track. This
procedure expands significantly the possible chain configurations,
also exploiting sequences of effects that are less relevant from a
guitarist’s point of view. Nevertheless, this new dataset can force
a better generalization in the CNN, which must learn to recognize
the presence of specific effects despite their particular order.

For each dataset, the total number of audio files after the ap-
plication of the effects’ chains is 12 800, i.e., 400 audio files pro-
cessed with 25 effect combinations. Considering that during the
preprocessing phase, detailed in Section 2.2, each audio file is
segmented into five parts, the final number of training samples is
64 000, corresponding to more than 35 hours of processed guitar
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tracks for each dataset. The presence of a particular effect is en-
coded in binary format in the name of each audio file.

2.2. Preprocessing

Initially, each guitar recording was down-sampled from 44 100 to
22 050 Hz, and, as previously mentioned, divided into five seg-
ments of 2 s each, leading to a total of 64000 audio files. Subse-
quently, each segment was transformed into its corresponding mel-
spectrogram, consisting of a 2-dimensional representation of the
audio signal, representing both the time and the frequency infor-
mation with a single matrix. The window size and the hop length
were set to 2048 and 512 samples, respectively, while the number
of mels, which is related to the frequency information, was set to
128.

2.3. Convolutional Neural Network

The model used for the multi-label classification task is a CNN
with a variable structure that depends on the specific hyperparam-
eters considered, which are discovered by using the proposed NAS
approach. At a high level, the model is divided into two main parts:
a set of convolutional blocks and a set of dense blocks. The for-
mer part of the model is composed of at least one convolutional
layer and one max-pooling layer stacked together, which are al-
ways present in the architecture, and of up to four subsequent con-
volutional and pooling layers, again, stacked together, whose pres-
ence, instead, depends on the specific hyperparameters. The latter
part of the model is made up of one or more (up to three) dense
blocks (i.e., fully connected layers), followed by the output layer.
The latter contains five neurons, which correspond to the five pos-
sible effects of the multi-label classification task.

In addition, batch normalization is implemented for each con-
volutional layer (placed after the max-pooling layer), and dropout
regularization is applied on each dense layer except for the output.
The Rectified Linear Unit is the activation function of choice for
the network because of its robustness for gradient vanishing and
its fast convergence. The activation function for the output layer
is the sigmoid, which outputs a real value in the range (0, 1), rep-
resenting the probability associated with the presence of a specific
effect in the audio file.

The other main hyperparameters of the CNN, i.e., the number
of neurons of the dense layers, the number of filters (i.e., output
channels) of the convolutional layers, and the dropout probabili-
ties, are discovered during the NAS optimization phase, described
in detail in Section 2.4. The number of weights in the CNN varies
based on the specific configuration of hyperparameters found by
the NAS, ranging from a minimum of 167 up to a maximum of
approximately 46.5 million.

2.4. Proposed GA-based NAS

Figure 1 illustrates the genotypes managed during the NAS pro-
cess, while Table 2 lists the hyperparameters considered during the
encoding phase along with their ranges. Key hyperparameters in-
clude the number of dense and convolutional blocks, which influ-
ence the CNN’s depth and task-specific tuning; the number of fil-
ters, which affect feature extraction capabilities; the x and y kernel
dimensions, optimized independently for time and frequency rep-
resentation in spectrograms; and the dropout probability in dense
layers, which aids in reducing overfitting.

Concerning the functions and operators, the fitness function
evaluates the performance of each candidate CNN model, which
is encoded by each individual generated during the evolutionary
process, based on the accuracy achieved on the validation set after
training that model on the training set. Further details are provided
below. We also developed a custom initialization mechanism that
randomly generates the first population of individuals with a bias
towards smaller networks. This behavior is achieved by imposing a
restricted range for some hyperparameters for the first population.
To be specific, the number of convolutional filters and the number
of neurons of the dense layers are sampled in the restricted interval

No. convolutional blocks 

No. filters (conv. layers)
Convolutional
block #1

Convolutional
block #2

Convolutional
block #3

Convolutional
block #4

Convolutional
block #5

Dense block #1

Dense block #2

Dense block #3

Filter x-dimension
Filter y-dimension

Max-pooling x-dimension
Max-pooling y-dimension

No. neurons (dense layers) 
Dropout probability

Figure 1: Graphical representation of the fixed-length individual
genotype describing a CNN model for the multiclass classification
task. The genotype contains 3 continuous variables, which rep-
resent the dropout probabilities of up to 3 dense blocks, and 30
integer variables: 5 × 5 parameters for the convolutional blocks
(i.e., 5 parameters for up to 5 blocks), 1 for the no. of convolu-
tional blocks that are actually used (at least one), 1 × 3 parameters
for the dense blocks (i.e., 1 parameter, the no. of neurons, for up
to 3 blocks), 1 for the no. of dense blocks that are actually used (at
least one). The parameters for the blocks that are not used are ig-
nored when it comes to translating a genotype into an actual CNN
model.
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Table 2: Hyperparameters with their corresponding range.

Hyper-parameter Minimum Maximum

No. convolutional blocks 1 5
No. filters (conv. layers) 2 64
Filter x-dimension 2 7
Filter y-dimension 2 7
Max-pooling x-dimension 1 2
Max-pooling y-dimension 1 2
No. dense blocks 1 3
No. neurons (dense layers) 2 64
Dropout probability 0.0 0.5

[2, 8] for the initial population. See Table 2 for the normal range
of each hyperparameter. This mechanism aims at finding CNNs’
architectures with a low number of parameters, i.e., weights, for
the purpose of lessening the computational consumption and the
inference time. Selection of parent solutions is performed using
a roulette-wheel principle [17], with higher accuracy individuals
having a greater chance of selection. Moreover, the elitism mech-
anism, i.e., the process of preserving the best-performing individ-
ual from one generation to the next, is added. We implemented the
binary crossover to facilitate information exchange between two
selected genotypes.

The mutation operator modifies one or more values in an in-
dividual’s vector with a certain probability to introduce diversity
and explore the solution space. In our NAS, this is adapted for
genes with limited value ranges, such as block counts and filter
dimensions, where mutation involves sampling a new value from
the range. For hyperparameters like the number of filters, neurons,
and dropout probability, mutation adds an integer or continuous
value to the gene.

3. EXPERIMENTAL SETUP

Our evaluation setup comprises two phases: in the first one, we
perform the NAS process to find the best-performing models. In
the second phase, we analyze the performance of these models
in greater detail. We also provide a comparison with the model
implemented in [5], to prove the effectiveness of our NAS strategy.
These two phases have been conducted as follows.

3.1. Neural Architecture Search

For each of the three datasets, the GA-based NAS was performed
considering a number of generations of 16 and a population size
of 8. The crossover probability was set to 0.8, while the mutation
probability was set to 0.3. These parameters have been set empir-
ically after a set of preliminary experiments. For each dataset, 4
runs of the GA were performed to collect statistics on the behavior
of the algorithm.

During the NAS process, each candidate architecture was
trained on a training set and then its accuracy was evaluated on a
validation set to find the corresponding fitness. More specifically,
three guitars, les, prs, and tele) were used for training, and the re-
maining one (strat) for validation. This train/validation splitting
approach has been chosen with the aim of ensuring that our model
has the capability to generalize well, even for guitars that it has
never encountered before. In this phase, the validation accuracy

was determined based on a prediction being classified as correct
only when the entire chain is correctly detected.

A Random Search (RS) approach was implemented to provide
a baseline for the search capabilities of our GA. The RS generates
each solution by performing a direct sampling for each gene, i.e.,
hyperparameter, from the available range (see Table 2 for details).
For a fair comparison with the GA, for each run of the RS, we
considered the best individual found at each batch of 8 solutions,
for a total of 16 batches corresponding to 128 individuals. Thus,
the total budget of the RS is the same as the one used for the GA.

3.2. Classification

In the second phase, for each dataset, the best model discovered by
the GA has been considered for computing all the statistics asso-
ciated with the multi-label classification task. The chosen model
was not simply the one that achieved the best performance during
the NAS phase, but we recomputed the accuracy values associated
with the best 2 models found by the GA to determine the final
model for each dataset (see Table 3). This approach has been cho-
sen for two main reasons: firstly, as previously elaborated, during
the NAS, the accuracy was calculated considering only one vali-
dation set, the strat guitar, and only a single run. Conversely, in
this second stage, we averaged 12 runs considering 4 different val-
idation sets, leading to more accurate results for properly choosing
the candidate model (the details of the cross-validation technique
adopted will be explained later in this Section). Secondly, the ac-
curacy values found during the GA can be very similar for different
solutions, as it can be noticed considering, for example, the indi-
viduals of the first dataset at indices 6 and 7 of Table 3. In this
case, the difference in accuracy is insignificant, about 0.1%, and
recomputing the accuracy with a more precise approach may lead
to a more reliable choice.

The models selected for the classification phase can be found
in Table 3 at indices 7, 10, and 10 for DS #1, DS #2, and DS #3,
respectively. As can be noticed, for the second dataset, the selected
individual was not the one that achieved the highest accuracy value
during the NAS phase.

As previously mentioned, the CNN obtained using the hy-
perparameters encoded in the selected individual for each dataset
was trained and validated considering a specific implementation
of cross-validation, particularly suited for verifying the generaliza-
tion of the model. More specifically, a guitar cross-validation was
implemented, where the samples of three guitars were involved in
the training phase, while the samples of the remaining guitar were
used for the validation phase. Therefore, in this case, four differ-
ent folds, i.e., validation sets, were considered, differently from
what happened during the NAS phase, where only one guitar, the
strat, was used for the validation. For achieving more meaningful
results, for each validation set, i.e., for each of the four guitars, 3
runs were performed, thus for a total of 12 runs.

The prediction values of each audio segment were fused ac-
cording to the majority voting technique for computing the final
model’s prediction. In fact, each sample represents a 2 s segment
of a specific guitar track, which was divided into five segments
during the preprocessing phase. Majority voting was applied sepa-
rately for each effect, considering an effect present in the audio file
if at least 3 out of 5 segments detected it. Notably, this technique
was excluded from the NAS phase to save computational resources
and time.

For the training setup, the loss function was the binary cross-
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entropy, optimized with Adam. The learning rate and the number
of epochs were set to 5 × 10−5 and 15, respectively, and the batch
size was set to 64. All these values were set according to some
preliminary experiments.

As previously mentioned, we conducted a final comparison
between the best models identified for each dataset and the CNN
proposed in [5], which represents the most recent state-of-the-art
deep learning model specifically designed for guitar effects clas-
sification while meeting the requirement of compactness (i.e., a
reduced number of parameters), which is the primary objective of
our work.

4. EXPERIMENTAL RESULTS

We present the NAS results to provide insight into the proposed
GA’s effectiveness and to assess the performance of the best-
discovered model. We developed our algorithm in Python, using
the Keras API with Tensorflow backend for both the NAS
and the classification phase2.

4.1. Neural Architecture Search

Both the NAS and the RS, used as a reference, required between
8 and 16 hours on a Tesla T4 GPU to complete a full run, which
involved training and validating 128 architectures, organized into
16 batches of 8 individuals each.

Fig. 2 shows the minimum, median, and maximum values of
the best solutions found at each generation across the 4 available
runs of the GA for the three datasets at hand. It is important to
recall that the accuracy value internally considered during the NAS
process is based on the detection of the entire chain of effects,
such that a sample is considered correct only if all the effects in
the chain are detected accurately.

Concerning the performance on each specific dataset, Fig. 2
(left) depicts the performance of the GA on DS #1. Note that the
algorithm discovers very promising results just after the first 4 −
5 generations, suggesting that small architectures are capable of
effectively handling the somewhat limited complexity of DS #1.

As depicted in Fig. 2 (center and right), the algorithm required
a greater number of generations to attain satisfactory accuracy re-
sults for DS #2 and DS #3. These two datasets are incrementally
more complex than DS #1, resulting in the algorithm struggling
even more to discover optimal solutions during the initial gener-
ations. Yet, the NAS process still allows the discovery of well-
performing architectures in later generations.

The GA was then compared to the RS approach for the op-
timization of the hyperparameters. The accuracy and the size,
specifically the number of weights, of each CNN found by the GA
and the RS were taken into consideration for the comparison.

The comparison between the architectures found by the two
search strategies is depicted in Fig. 3 for the three datasets. In each
scatter plot, the x and y dimensions are associated with the accu-
racy and the number of parameters of each solution, respectively.
In the figure, the larger dots indicate the non-dominated solutions
found in all runs of both RS and GA, i.e., the Pareto front that en-
compasses the best solutions in terms of number of parameters and
accuracy found by both search strategies considered together. The

2The code is available at https://github.com/
michelerossi1/Paper_effects_chain.

Table 3: Non-dominated solutions found by GA and RS on the
three datasets.

Dataset Index Optimizer Accuracy Parameters

DS #1

1 GA 0.245 8091
2 GA 0.908 20 762
3 GA 0.929 29 811
4 GA 0.941 32 099
5 GA 0.945 68 339
6 GA 0.950 93 464
7 GA 0.951 209 498
8 RS 0.955 219 964
9 RS 0.964 517 160

DS #2

1 GA 0.179 10 346
2 GA 0.219 11 732
3 GA 0.417 20 906
4 GA 0.428 27 533
5 GA 0.470 28 712
6 GA 0.534 56 426
7 GA 0.593 75 993
8 RS 0.801 82 780
9 GA 0.812 194 717

10 GA 0.834 227 240
11 GA 0.857 275 372
12 RS 0.868 410 836

DS #3

1 GA 0.174 4778
2 GA 0.178 6063
3 GA 0.216 6119
4 GA 0.409 13 651
5 GA 0.414 34 714
6 GA 0.419 36 671
7 GA 0.461 45 406
8 GA 0.637 46 162
9 GA 0.764 50 816

10 GA 0.791 68 213
11 RS 0.815 224 833

numerical values associated with these non-dominated solutions
are reported in Table 3.

As previously explained, our implementation of the GA is ca-
pable of discovering highly promising solutions with a minimal
set of parameters (please note the logarithmic scale on the y-axis),
especially when working with DS #1. By analyzing Fig. 3 (top)
and Table 3, it can be observed in fact that out of the nine solutions
on the final Pareto front, the GA was responsible for discovering
seven. Nevertheless, the RS found two solutions that can be found
at indices 8 and 9 of Table 3 with a slight increase in accuracy.

When considering DS #2, we can notice how the GA exhibits
a variety of solutions belonging to the overall Pareto front, see the
larger dots in Fig. 3 (center). In this case, the RS was able to iden-
tify the solution with the highest accuracy value, with an increase
of approximately 1% compared to the best individual discovered
by the GA, but at the cost of increasing the number of parameters,
i.e., weights, of the model by about 50%. Moreover, as can be
noticed, the non-dominated solutions found by the GA are spread
across the scatter plot, including many solutions with a relatively
low accuracy value. This outcome can be attributed to the fact that
the models discovered during the first generations by the GA have
a very limited number of convolutional output channels (i.e., fil-
ters) and neurons, resulting in highly compact architectures that
lack the capacity to effectively handle the complexity of DS #2.

This aspect is even more evident when looking at the results
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Figure 2: Minimum, median, and maximum fitness values for each generation on DS #1 (left), #2 (center), and #3 (right).
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Figure 3: Distribution of the architectures found in the various runs of the GA and the RS on DS #1 (up), DS #2 (center), and DS #3
(bottom). The larger dots correspond to the Pareto front architectures listed in Table 3.

shown in Table 3, where all the non-dominated solutions found by
the two search strategies are reported. In contrast to the outcome
found on DS #1, we can observe that the solutions found by the
GA cover an area of the search space associated with relatively
low accuracy values, differently from the RS, which instead finds
non-dominated solutions with accuracy values higher than 0.8.

Finally, the results associated with DS #3 can be analyzed con-
sidering Fig. 3 (bottom). It can be observed that, similarly to the
other two datasets, the solutions found by the GA tend to use fewer
parameters than those found by the RS. Once again, the majority of
the Pareto front is composed of solutions discovered by the GA, in-
dicating that the GA successfully managed both the accuracy and
the model size throughout the search process. However, the RS
approach discovered a solution that resulted in a slight increase in

accuracy compared to the best model found by the GA, but at the
cost of tripling the number of parameters in the model.

4.2. Classification

For each dataset, the top-performing model identified during the
GA-based NAS process was selected following the approach de-
tailed in Section 3, and the F1-scores for each effect were calcu-
lated (see Fig. 4 and Table 4). The plots illustrate the challenges
faced by the CNN in detecting each specific effect. These scores
were derived by averaging the results from 12 runs of the classi-
fication task, each involving a full training and validation process
using the previously described guitar-cross-validation technique.
As previously stated, Table 4 presents the comparison between the
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Figure 4: F1-score value for each effect on DS #1 (left), DS #2 (center), and DS #3 (right). O = overdrive, C = chorus, T = tremolo, D =
delay, R = reverb.

Table 4: Mean and standard deviation of the F1-score for each effect and dataset.

Dataset Model Overdrive Chorus Tremolo Delay Reverb

DS #1 Our CNN 0.984 ± 0.015 0.996 ± 0.007 0.999 ± 0.001 0.996 ± 0.003 0.999± 0.002
Comunità et al. [5] 0.927 ± 0.106 0.982 ± 0.032 0.995 ± 0.003 0.930 ± 0.039 0.994± 0.010

DS #2 Our CNN 0.983 ± 0.024 0.978 ± 0.019 0.963 ± 0.023 0.973 ± 0.016 0.999 ± 0.001
Comunità et al. [5] 0.889 ± 0.098 0.962 ± 0.022 0.704 ± 0.094 0.855 ± 0.054 0.990 ± 0.016

DS #3 Our CNN 0.952 ± 0.048 0.981 ± 0.010 0.937 ± 0.038 0.958 ± 0.014 0.999 ± 0.001
Comunità et al. [5] 0.914 ± 0.070 0.966 ± 0.014 0.759 ± 0.044 0.827 ± 0.070 0.986 ± 0.025

top models identified by our NAS and the model [5], hereafter re-
ferred to as the baseline model.

We conducted a Wilcoxon signed-rank test that demonstrated
that our models generally outperformed the baseline model across
multiple effects and datasets. In DS #1, our model showed sig-
nificant improvements for only two effects: tremolo and delay. In
DS #2, our model surpassed the baseline in all five effects. Lastly,
in DS #3, our model significantly outperformed the baseline in all
effects except for Overdrive.

When considering these results, it is important to note that the
baseline model, despite being very similar to our models, was orig-
inally designed for a somewhat different task: multi-class classifi-
cation of non-linear effects. Thus, this comparison should be inter-
preted within that context. Nevertheless, it offers insights into the
potential for converting the model from single-class to multi-class
while maintaining high accuracy.

5. DISCUSSION

The proposed GA showed promising results across the three
datasets. However, it found good solutions within a limited num-
ber of generations only for DS #1, requiring more generations for
DS #2 and DS #3. This is likely due to the algorithm starting with
small architectures in early generations, consuming resources on
models insufficiently capable of handling the complexity of DS #2
and DS #3.

Additionally, we discovered that certain hyperparameters
played a crucial role in determining the optimal CNN models.
In particular, considering DS #2 and DS #3, we identified trends
in hyperparameter configurations leading to high accuracy values.
Analyzing models with accuracy greater than 0.7, we observed
significant similarities in three parameters: the number of convo-

lutional layers, the number of dense layers, and the size of max
pooling filters. All 15 architectures that achieved accuracy ex-
ceeding 0.7 (9 for DS #2 and 6 for DS #3) in the 4 runs of the
NAS had 5 convolutional layers. Additionally, none of them had
3 dense layers, and the choice between having 1 or 2 dense lay-
ers showed no clear advantage. Regarding the size of max pooling
layers, the (1 × 1) case, which represents no pooling layer, was
rare, occurring only in 6 out of 75 potential max pooling layers
(i.e., 15 architectures with 5 layers each). In contrast, the models
demonstrated very high performance across various combinations
of hyperparameters for DS #1, except for the number of convolu-
tional layers. Out of the 56 architectures that achieved an accuracy
greater than 0.7, 53 had either 4 or 5 convolutional layers, with no
evident preference between these two values.

Other observations can be made in relation to each specific
guitar effect. Considering DS #1, the best model found was able
to perform the correct detection of each effect without difficulty.
The overdrive was the only effect for which the CNN exhibited a
lower performance, with an F1-score of 0.98. For DS #2, the ac-
curacy of the model reached its lowest value for the classification
of the tremolo effect, obtaining an F1-score of 0.96. This behav-
ior can be interpreted considering that this specific effect, which
is basically an amplitude modulation, can vary considerably in its
oscillation rate, considering different samples. In DS #2, as pre-
viously explained, the model can encounter during the validation
phase samples with different tremolo rates with respect to the ones
encountered during training.

As can be noticed in Fig. 4 (right), the model decreased its
performance for almost every effect when considering DS #3. This
behavior can be understood considering that the specific order of
the effects in the chain significantly impacts the final sound. There-
fore, the CNN should be able to recognize the presence of a spe-
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cific effect independently of its internal settings, of the presence of
other effects, and of the specific position the effect occupies in the
chain, leading to a more challenging task.

This study has several limitations that could be addressed with
future work. The datasets rely on specific guitar plugins for each
effect, which may limit the model’s accuracy if different plugins
are used. This could be mitigated by creating a larger, more diverse
dataset with plugins from various manufacturers. Another limita-
tion involves parameter selection, as effects that have more than
one influential parameter require a broader sampling of their set-
tings. To address this, an enhancement to the current work would
be to randomly sample every parameter for each implementation
of each effect involved in the dataset. Additionally, the analysis fo-
cused on five common effects (overdrive, chorus, tremolo, delay,
and reverb), but could be expanded to include others like compres-
sion, distortion, and vibrato, as well as longer effect chains. Fi-
nally, incorporating performances from more guitarists could im-
prove the model’s generalization.

6. CONCLUSIONS

This work addresses limitations in guitar effect recognition by
proposing three novel datasets of realistic audio tracks and im-
plementing a custom Neural Architecture Search (NAS) approach
using Genetic Algorithms (GA) to optimize Convolutional Neu-
ral Network (CNN) hyperparameters. We recorded 400 guitar im-
provisations played on four different guitars, processed through
chains of five effects with increasing complexity: fixed settings
(DS #1), parameter variations (DS #2), and both order and param-
eter variations (DS #3).

Through our NAS approach, we successfully identified CNN
architectures that achieve a balance between accuracy and ef-
ficiency, making them more suitable for real-time or resource-
constrained applications. Additionally, we found that as dataset
complexity increases, the depth of convolutional and pooling lay-
ers plays a crucial role in maintaining classification performance,
while dense layers have a lesser impact. Among the effects stud-
ied, the tremolo proved to be the most difficult to classify.

Overall, this study provides a foundation for developing more
practical and efficient models for effect chain estimation, paving
the way for enhanced real-time applications in music technology.
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