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ABSTRACT

This study investigates the use of an unsupervised, physics-
informed deep learning framework to model a one-degree-of-
freedom mass-spring system subjected to a nonlinear friction bow
force and governed by a set of ordinary differential equations.
Specifically, it examines the application of Physics-Informed Neu-
ral Networks (PINNs) and Physics-Informed Deep Operator Net-
works (PI-DeepONets). Our findings demonstrate that PINNs suc-
cessfully address the problem across different bow force scenarios,
while PI-DeepONets perform well under low bow forces but en-
counter difficulties at higher forces. Additionally, we analyze the
Hessian eigenvalue density and visualize the loss landscape. Over-
all, the presence of large Hessian eigenvalues and sharp minima
indicates highly ill-conditioned optimization.

These results underscore the promise of physics-informed
deep learning for nonlinear modelling in musical acoustics, while
also revealing the limitations of relying solely on physics-based
approaches to capture complex nonlinearities. We demonstrate
that PI-DeepONets, with their ability to generalize across vary-
ing parameters, are well-suited for sound synthesis. Furthermore,
we demonstrate that the limitations of PI-DeepONets under higher
forces can be mitigated by integrating observation data within a
hybrid supervised-unsupervised framework. This suggests that a
hybrid supervised-unsupervised DeepONets framework could be
a promising direction for future practical applications.

1. INTRODUCTION

In recent years, Physics-Informed Neural Networks (PINNs) [1], a
prominent framework in scientific machine learning (SciML), has
gained significant traction in computational physics. The core idea
of PINNS is to approximate the solution of ordinary differential
equations (ODEs) or partial differential equations (PDEs) using a
neural network, where the inputs are typically the space and time
coordinates. By utilizing automatic differentiation in neural net-
works, we can efficiently compute the required gradients in the
PDE residuals, along with the losses associated with initial and
boundary conditions (ICs, BCs). This results in a composite loss
function with multiple competing objectives, effectively framing
the problem of solving ODEs/PDEs as a multi-task deep learn-
ing challenge. Another framework, Physics-Informed Deep Op-
erator Networks (PI-DeepONets) was proposed to incorporate ICs
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as part of the input [2} 3| 4]]. This approach is effective in simu-
lating long time-integration systems, providing an advantage over
PINNSs, which typically require the time-marching scheme [S]] or
the causal training strategy [6].

Physical modelling and physics-based sound synthesis of mu-
sical instruments require solving the system’s underlying govern-
ing equations [7, [8]. SciML has been utilized in musical in-
strument measurement methodologies, such as near-field acoustic
holography, to reconstruct violin plate vibration patterns [9, [10}
11]. A PINNSs approach for acoustic tube modeling was proposed
in [12], which can be applied to model resonators of wind instru-
ments [13] or the vocal tract [14]], and reconstructing the acoustic
field within a tube using sparsely measured pressure [[15]], identify-
ing physical coefficients in tubes [16], and determining geometric
parameters of a trumpet [13].

Beyond physics-informed deep learning, some studies have
explored data-driven, supervised deep learning approaches for
solving the governing equations in musical instrument modeling.
For example, the Fourier Neural Operator has been applied to
model stiff membrane vibrations [[17]. Recurrent neural networks,
state space models and Koopman-based deep learning techniques
have been used to simulate dispersive linear lossy and nonlinear
tension modulated strings [18,[19].

However, these approaches treat the problem purely as a super-
vised learning task, disregarding the underlying physical knowl-
edge encoded in the governing equations. Physics-informed ap-
proaches are inherently more challenging than purely data-driven
methods due to their unsupervised nature. As shown in [20], in-
corporating training data into the physics-informed framework to
create a hybrid physics-informed data-driven approach can sim-
plify the loss landscape and mitigate ill-conditioned optimization.

In this paper, we address the bowing simulation via PINNs
and PI-DeepONets. The distinctive sound of bowed string instru-
ments arises from the bowing mechanism, which involves contin-
uous excitation resulting from bow / string interactions and non-
linear friction forces. When simulating bowed strings, the pri-
mary computational challenge lies in handling this nonlinearity.
This challenge applies not only to traditional numerical methods,
such as finite difference and finite element methods, but also to
physics-informed deep learning approaches like PINNs and PI-
DeepONets, as we will demonstrate in this paper. Therefore, we
focus exclusively on the bowing mechanism by solving a bowed
one-degree-of-freedom mass-spring system to evaluate the effec-
tiveness of PINNs and PI-DeepONets in such simulations. To
the best of our knowledge, no existing research has explored
modelling the bow-string friction interaction using deep learning,
whether through data-driven or physics-informed methods. Sce-
narios with different bow forces have been investigated using both
PINNs and PI-DeepONets. The results show PINNs successfully
address the problem across different bow force scenarios, while
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PI-DeepONets perform well under low bow forces but encounter
difficulties at higher forces. Additionally, we analyze the Hessian
eigenvalue density and visualize the loss landscape. The presence
of large Hessian eigenvalues and sharp minima indicates highly ill-
conditioned optimization. We also demonstrate that the limitations
of PI-DeepONets under higher forces can be mitigated by inte-
grating observation data within a hybrid supervised-unsupervised
framework.

The remainder of this paper is organized as follows. Sec-
tion[2]describes the bowed mass-spring model. Section[3|describes
PINNs and PI-DeepONets frameworks. Section[d presents the re-
sults and discussion. Finally, Section |§] summarizes the study and
outlines future directions.

2. BOWED MASS-SPRING MODEL

Instead of modeling the full string dynamics, we consider a bowed
simple harmonic oscillator, represented by a mass-spring system
with nonlinear frictional forcing. This archetypal test model is
widely used in research to study numerical simulation challenges
[7L21]. The schematic illustration is shown in Fig. m The motion
of the mass m is described by

1

n=u; —vg,

{Utt +wlu = —Fpé(n),

where u is the mass displacement (m), w is the angular fre-
quency (rad s~ 1), Fz is the bow force normalized by the object’s
mass (ms~2), vp is the bow velocity (m s, n is the relative
velocity between the mass and the bow (m s™1), and the function
¢(n) represents the bow friction characteristic. In this case, we

UB V
Figure 1: Illustration of a bowed mass-spring system.

consider the soft characteristic static friction model [[7]]

6(n) = Vaane ™" /2, @
where a is a free parameter. See Fig. |2 for a plot of ¢(n) with

a = 100. The derivative Z—Qﬁ is also plotted, and the highly non-

linear region is defined as the interval between its two local min-
ima. This region corresponds to the stick phase, characterized by
low values of 7, while the regions outside this interval are asso-
ciated with the slip phase. Note that this friction model is not
derived from physical principles, but it provides a reasonable ap-
proximation of the discontinuity and is relatively easier to handle
numerically [7]. Seeking a more accurate and physically realistic
bow friction model remains an active research topic in the musical
acoustics community; see [22] for a comparison of different mod-
els. However, since our primary goal is to evaluate novel computa-
tional approaches, we adopt this classical static bowed mass-spring
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n [m s

Figure 2: Soft characteristic static friction model ¢ and its deriva-

tive fl—f;, given by (@), with a = 100.

model, which is commonly employed as a benchmark in physics-
informed sound synthesis for testing numerical methods [7} 21].
Indeed, it would be worthwhile to further explore the application
of the elasto-plastic friction model [22], which provides a more
physically accurate representation.

This one-degree-of-freedom mass-spring system is governed
by two coupled ODEs (I, which can be reformulated into first-
order form [21] by introducing the generalized coordinate ¢ and
generalized momentum p, as

q=wu, p=u. 3)
Therefore, (T) becomes

g —wp =0,
4
{m+wquﬁﬂm—0 @

In the following, we use this first-order form (@) for the simula-
tion. To solve (@), we require two initial conditions (ICs) for both
p|t:07 Q|t=0.

3. NEURAL NETWORKS

We present the solution of the bowed mass-spring system by for-
mulating it as an optimization problem, which is then solved using
the PINNs and PI-DeepONets frameworks.

3.1. Modified FCNN

A modified fully-connected neural network (FCNN) [23], inspired
by attention mechanisms, is used in this study. It outperforms stan-
dard FCNNSs in PINNs by capturing multiplicative interactions be-
tween input dimensions and including residual connections [23].
Given the network inputs X and outputs O, the forward pass is
defined by propagating X through the network layers to compute
O, through [23]

U=oXWY+8Y), V=0XW" +b"),
H(l) _ O_(XWZ,I + bZ,1)7

Z(k:) _ O_(H(k)WZ,k + bZ,k:)7
Jz ey

k=1,..,L, 5)
=1-z"Moevu+z®eVv, k=1,..,L,
0 =H"W +1°,

where o is the activation function and ® denotes element-wise
multiplication. The network parameters are

0= {w ", WY b, (WP PR e, wObCY, (6)

where W) and b(") denote the weight matrices and bias vectors of
the corresponding layer. The channel or layer sizes of U, V, Z (%)
and O are denoted as cy, cv, ¢, x) and co, respectively. Z has L
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layers in total. A graphical representation of this modified FCNN
is shown in Fig. [3](c).

3.2. PINNs

PINNSs are formulated as

p=Fie (t)v
{q = F2,0, (t)7 @

where F1 ¢, and F3 g, represent two distinct networks with iden-
tical architecture. Since Fi g, and F3 4, follow the same flow,
we illustrate the process using one as an example. The input to
Fi,0, is the time coordinate ¢ € [0,¢x] C R**Y, a single chan-
nel vector sampled at N points, which is first scaled by scaling
factor s® for normalization. Then the Random Fourier Feature
(RFF) embedding [24] is employed with a scale parameter o’,
which controls the range of frequencies in the embedding, and is
applied with an encoding size of crr . RFF maps input data into a
higher-dimensional space using sinusoidal transformations, help-
ing to mitigate spectral bias phenomenon—the tendency of neural
networks to learn low-frequency components faster while strug-
gling with high-frequency ones [25]. RFF has proven effective in
overcoming spectral bias in PINNs [26]. The embedded features
next serve as the input to the modified FCNN. The output of the
FCNN is p C R*™  which are scaled by scaling factor s? (s? for
the other case). Automatic differentiation is then used to compute
the loss functions, which encompass the PDE and IC losses, all
formulated as mean squared error (MSE) terms. Predicted values
are denoted with a hat *. The PDE losses are expressed as

L S Gt — wp
ODE; = Nops qt Pi|>
1 - N —an?+1/2 ®
Lope, = Pt + wd + FpvV2ane ,
Nope
t e [O,t]\]].
The IC losses are
Lic, = 5 limo — p)
1Cq Nio Plt=0 — P|t=0]|»
9)

1 N
,CIC’Q = Tw"q\t:o - Q|t:0

Nopg and Njc represent the respective numbers of collocation
points used for the ODE and IC loss computations. Then the total
loss function is

L =MXope,Lope, + AopE, LoDE,+

10
Arc, Licy + Are, Li1cs,, (10)

with \opE,, A\oDE,, Arc; and A\rc, as the loss function weights.
We employ learning rate annealing for loss balancing to determine
these weights, as described in [23]]. The total loss function is then
fed into the optimizer, where a gradient descent routine is applied
via back propagation to update 6, and 2. A diagram for the archi-
tecture of PINNs is shown in Fig. E] (a).

However, PINNs often encounter failure mode challenges
when the optimization problem is ill-conditioned [S]]. Various ap-
proaches have been proposed to address these issues, and a com-

prehensive review of PINNs training strategies can be found in
[27]]. In long-time integration problems (always the case for sound
synthesis or musical acoustic simulation), it is extremely difficult
to solve the entire time domain simultaneously. Additionally, stud-
ies have shown that continuous-time PINNs models can violate
causality, making them prone to converging toward incorrect so-
lutions [6]. To overcome the time related issues, we utilize the
time-marching scheme [3|] and causal training strategy [6]. For
the time-marching scheme, the entire time domain is segmented
into My,, subdomains (or windows), as

£ € [ti, tira] CRN fori =0, ..., My — 1,
Mim—1 (11)
where Z Ni = N,to =0,tm,,, =1tnN.
1=0

In other words, a separate network is utilized and trained after
the optimization of the previous subdomain is solved, following
a time-marching routine and ultimately resulting in a total of My,
sub-networks. The schematic of time-marching for PINNs is pre-
sented in Fig. ] For a more challenging task, we adopt the causal
training strategy, for which each subdomain t* is divided into
Mqs chunks

@) € [tj,tj+1] C RIXNj,fOI"j =0,..., Mcau — 1,
Mcauw—

3 ' (12)
where Nj = Ni,to = tithcau = ti+1.
3=0

The training of the i-th sub-network starts with the time samples
from tY=" . Once the loss condition Lopr, < Neau 18 satisfied,
the time samples are augmented by adding samples from t0=2),
continuing this process iteratively until the last chunk is included.
Note that the data augmentation procedure occurs within a single
network training process, making it fundamentally different from
time-marching. A schematic view of time-marching and causal
training is provided in Fig.

3.3. PI-DeepONets
PI-DeepONets [3] are formulated as

(P, @) = F3,05 (L, (P, @) |t=0)- (13)

The inputs to F3,0, are t € [0,a] C R**™_ similar to PINNs,
scaled by 32 and (P, q)|t:0 € [pmin;pmaz] X [Qmin,Qmaz] C
R2*M | scaled by s™?. Then, the RFF embedding is applied to
both ¢ and (p, q)|¢+=0, which are then fed into the branch and trunk
net, respectively. Both networks are modified FCNNs. The latent
features from both the branch and trunk network outputs are split
into two equal parts, with each half merged via a dot product to
separately produce the outputs p C R'*M and ¢ ¢ R which
are scaled by s”?. Then, the backpropagation process follows a
similar routine as PINNs. A diagram for the architecture of PI-
DeepONets is shown in Fig. [3|(b).

3.4. PINNSs vs. PI-DeepONets

It is natural to ask about the differences between PINNs and PI-
DeepONets. From the input perspective, PINNs use only the co-
ordinate ¢ as input. In contrast, PI-DeepONets take ¢ as input
to the branch network and also incorporate the initial condition
(p, @)|t=0 as input to the trunk network. From the solution per-
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Figure 4: The solution spaces that PINNs and PI-DeepONets aim
to solve.

spective, the ODEs themselves (@) define an infinite domain S
(with ¢ € [0, c0]), but the solution space of interest—referred to
as the goal space G—is a subspace of this infinite domain, with
G C S. In the case of PINNs, solving a long-time integration
problem requires employing multiple (Mt ) neural networks over
different time windows to cover G. Therefore, under the ideal as-
sumption that PINNs can perfectly solve the ODEs, we have

Mem—1

SpINN = U SS}NN, G =SpINN. (14)
i=0

However, PI-DeepONets, by randomly sampling ICs p(0)
and ¢(0), inherently capture G within their solution space
Spi—Deeponet- Under the ideal assumption that PI-DeepONets
can perfectly solve the ODEs, we obtain

G C SPI—DeepONet- (15)

Essentially, the solutions corresponding to these randomly sam-
pled ICs do not necessarily lie within G. In other words, PI-
DeepONets operate over a significantly larger solution space com-
pared to PINNs. Ideally, if both methods achieve equally good
results, PI-DeepONets might be the preferred choice. However,
given the broader solution space, the complexity of PI-DeepONets
is inherently higher than that of PINNs. A visualization of the
solution space is provided in Fig.[

4. SIMULATION RESULTS
4.1. Implementation

We validate the PINNs and PI-DeepONets for w = 2nf, f
100 Hz, a = 100, and vg = 0.2ms™?, considering three differ-
ent values of F'g set as 10, 100, and 1000. The choice of varying

(©

Figure 3: Network Architectures: (a) PINNs, (b) PI-DeepONets, and (c) Modified FCNN [23]. Note that (c) serves as a component of
the PINNs’ Nets, as well as the Branch and Trunk Nets in PI-DeepONets. The legend indicating forward propagation (fwd prop.) and
backpropagation (back prop.) applies to both (a) and (b).

F'p is motivated by its influence on the bowing mechanism, result-
ing in different waveforms. For both PINNs and PI-DeepONets,
the hyperbolic tangent (tanh) activation functions are utilized, the
RFF encoding size, crrr, is set to 50 and the resulting layer U
and V have cuy = cv = 100 channels. For PINNs, each modi-
fied FCNN consists of L = 4 Z layers, with each layer containing
¢4y = 100 channels. The output layer O has co = 1 channel.
For PI-DeepONets, each modified FCNN in both the branch and
trunk net consists of L = 6 Z layers, with each layer containing
¢4ty = 100 channels. The output layer O has co = 200 chan-
nels.

For PINNs, Nopr, = Nope, = 1000, Nr¢;, = Nic, =
1. The ODEs input ¢ are uniformly sampled within the interval
[0, s']. The training of PINNs follows a full-batch paradigm. For
PI-DeepONets, Nopr, = Nopr, = 10000 x 1000, Nrc,
Nic, = 10000. To construct the dataset, we first generate a
single group of data. Each group starts with an IC input (p, q)
randomly sampled from the range [—s?'?, s??] at t = 0 (we set
sP = 57 = sP7 for all cases). The corresponding ODEs inputs
(p, q) are then repeated 1000 times while 1000 values of ¢ are ran-
domly sampled from [0, s*]. This process is repeated 10000 times
to create the final input dataset. PI-DeepOnets employ a mini-
batch training strategy with a batch size of 50000. We employ the
state-of-the-art second order optimizer ShampoO with Adam in
the Preconditioner’s eigenbasis (SOAP) [28] for both PINNs and
PI-DeepONets. SOAP has been demonstrated to efficiently ap-
proximate the Hessian preconditioner, leading to significant per-
formance improvements in PINNs [29]. Note that either full-batch
training or a large batch size is used, as it is suggested in [28]
that a large batch size enhances the performance of the SOAP
optimizer. The other hyperparameters for SOAP remain at their
default values. The initial learning rate is set to 0.003. An ex-
ponential learning rate scheduler is applied with a decay rate of
0.9. The decay step is set to 10000 for PINNs and 3000 for PI-
DeepONets. A loss weight balance strategy, learning rate anneal-
ing (ann.) [23]], may be employed for some cases. If the adaptive
loss weight annealing strategy is not applied, weights are manu-
ally set as A\opr, = Aope, = 10, \1c;, = Aic, =1 X 108.
The training strategies and other hyperparameters are summarized
in Table [T} It is worth mentioning that different hyperparame-
ters may be used for different values of Fp, depending on the
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Table 1: Hyperparameters and training strategies for PINNs and PI-DeepONets.

Net Fp | s 5P | cas. Meau Neaw | tm. My | RFF ¢’ | ann.| runtime [h]
PINNs 10 0.1 0.2 X - - v 3 v o1 X 38.76
PINNs 100 | 0.03| 0.2 X - - v 3 v o1 X 38.14
PINNs 1000 | 0.01] 1 v 50 0.1 v 5 v 3|V 14.59
PI-DeepONets | 10 001| 035 x - - X - v o1 v 36.62
PI-DeepONets | 100 | 0.01| 035 x - - X - v 1|V 21.41
PI-DeepONets | 1000 | 0.01| 2 X - - X - v 3|V 14.22

complexity of the optimization task. As discussed in Section 3.2}
incorporating the ODEs into the loss function can lead to an ill-
conditioned optimization problem, which may cause the network
to encounter failure modes [S]]. Intuitively, more difficult tasks de-
mand a more careful design, potentially incorporating additional
strategies, more time-marching windows, and more chunks for
causal training, when such techniques are used. In other words,
these hyperparameters are sensitive to F'g. The training processes
are terminated once the monitored loss converges. Notice that
to successfully train PINNs for F'g = 1000, the causal training
process may terminate early at an intermediate chunk rather than
progressing to the final chunk if incorporating data from the next
chunk introduces a bias that compromises the accuracy of the en-
tire window. The implementation is carried out using PyTorch and
an NVIDIA GeForce RTX 4080 GPU with 16 GB VRAM. The
code and accompanying sound samples are available on githulﬂ

4.2. Results
4.2.1. Zero ICs: PINNs vs. PI-DeepONets

The first and second rows of Fig. [5] present the simulation re-
sults for zero ICs (p|lt=0 = gq|t=0 = 0), where we compare
PINNs and PI-DeepONets against the Finite Difference Method
(FDM) benchmark. The FDM scheme for the bowed mass-spring
model follows the implementation in [[7]] and employs an extremely
high sampling rate of 4410 kHz to ensure accuracy. Overall,
both PINNs and PI-DeepONets perform well for Fg = 10 and
Fp = 100. However, for F'g = 1000, the optimization of PI-
DeepONets fails, whereas PINNs successfully converge to the de-
sired solution. When Fg = 1000, training the model becomes
more challenging, often leading to failure modes in the bowed
mass-spring model. To mitigate this issue, we employ causal train-
ing and a time-marching strategy with a short time duration. No-
tably, this is the only model that utilizes causal training.

To further assess the accuracy of the results, we present the
ODE; and ODE; losses in the third and fourth rows of Fig. [
In particular, we compare the losses of PINNs and PI-DeepONets
against FDM. Here, FDM refers to the previously mentioned high
sampling rate, while FDM-low represents a lower sampling rate
(audio rate) of 44.1 kHz. PINNs demonstrate better accuracy than
PI-DeepONets and can achieve competitive accuracy with FDM
at the high sampling rate. Meanwhile, PI-DeepONets can achieve
competitive accuracy with FDM at an audio sampling rate. When
examining PINNs for Fg = 1000, it is worth noting that even
FDM at an audio sampling rate can exhibit relatively large local
numerical errors, although the results may still be acceptable for
sound synthesis purposes. This suggests that the challenge is not
exclusive to PINNs and PI-DeepONets but also affects traditional
numerical methods.

The results above intuitively suggest that for 'z = 1000, the
optimization process is ill-conditioned. To further validate this hy-
pothesis, we analyze the deep learning dynamics using both the

Uhttps://github.com/Xinmeng-Luan/bowmass-dafx

Hessian eigenvalue density histogram and loss landscape visual-
ization (for PINNs, we only show the result from the first win-
dow network for time-marching). The Hessian matrix, denoted

2
as H=V>L(0);; = L@E(G), H € R™*™ consists of the
9.

second-order partial derivatiixes of the loss function with respect
to the neural network parameters, where ng is the total number of
parameters. It captures the information about the curvature of the
loss landscape and can be computed using automatic differentia-
tion. The Hessian matrix can be decomposed as H = QAQT,
where () contains the eigenvectors and A = diag(A1, ..., An,) is
a diagonal matrix of the corresponding eigenvalues.

The Hessian eigenvalue density histograms are shown in the
fifth row of Fig. E} Pyhessian [30] is utilized for the calculation
of Hessian matrix. When analyzing PINNs and PI-DeepONets
separately, we observe that as F'p increases, the maximum eigen-
value also increases. Furthermore, when comparing PINNs to
PI-DeepONets, PI-DeepONets generally exhibit higher maximum
eigenvalues. Overall, the observed maximum eigenvalues are quite
large, indicating a high condition number (ratio of maximum to
minimum eigenvalues), which suggests that the optimization prob-
lem is ill-conditioned. Moreover, as F'g increases, the level of ill-
conditioning also intensifies.

We visualize the loss landscape of PINNs and DeepONets in
Fig. 5] shown in the sixth and seventh rows, respectively. The
network parameters are perturbed along two directions €1, €2: the
eigenvectors corresponding to the top two Hessian eigenvalues, re-
sulting in the network parameters as 0 = 0 + ae1 + [ea, with
a € [-0.5,0.5],8 € [-0.5,0.5]. Moreover, layer-wise nor-
malization is applied, following [31]. Sharp minima are consis-
tently observed in all cases. These correspond to regions in the
loss landscape where the loss function varies rapidly. Mathemat-
ically, this also aligns with the previously shown large Hessian
eigenvalues, indicating high curvature. The comparison of the loss
landscapes of PINNs and PI-DeepONets reveals that PINNs tend
to have sharper minima. This is consistent with the intuition that
sharper minima often correspond to poorer generalization perfor-
mance [32], although this may not hold strictly in all cases. More-
over, this observation is consistent with expectations, given that
the goal space G of PI-DeepONets is significantly larger than that
of PINNSs. In essence, PINNs are not expected to generalize well,
as their test data replicates the scenarios used during training. Con-
versely, the test set for PI-DeepONets contains randomly sampled
ICs, which will be detailed later. This indicates that optimizing PI-
DeepONets is inherently more complex than optimizing PINNs.

4.2.2. Random ICs: PI-DeepONets

We evaluate the generalization of PI-DeepONets for different
F'p by testing on 100 cases with uniformly sampled ICs within
[—sP9, sP9]. Additionally, we ensure that the resulting values of
p and ¢ within the time domain stay within the same range. The
maximum test time ¢mq is provided in Table 2] The solution tra-
jectories of the test p and ¢ from the FDM simulation are shown
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Figure 5: First and second rows: Simulation results. Third and fourth rows: ODEs loss distribution. Fifth row: Histogram of Hessian
eigenvalue density. Sixth row: Loss landscape for PINNs. Seventh row: Loss landscape for PI-DeepoNets. Eighth row: Relative velocity
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in Fig. [} For each case, the solid black region corresponds to
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Figure 6: The solution trajectories of p and g from the FDM sim-
ulation with random ICs. The zero ICs cases are marked in red.

the steady-state solution, while the transient behavior varies with
different ICs, resulting in the lighter black spots observed in the
figure. We also mark the zero ICs cases in red. The mean normal-
ized mean square error (NMSE) and normalized cross correlation
(NCC) across 100 cases are reported in Table We observe that
the predictions for F'g = 10 and Fg = 100 are almost perfect,
while the results for F'g = 1000 are notably poor.

Table 2: Prediction results of PI-DeepONets for randomly sampled
ICs.

Fp | tmax [s]] NMSE(p) | NMSE(q) | NCC(p)| NCC(q)
10 0.4 1.70 x 10~8] 1.78 x 10~8| 100.00% | 100.00%
100 | 0.2 2.57 x 1073 | 2.19 x 1073 | 99.87% | 99.89%
1000| 0.1 2.81 1.69 5.80% 3.37 %

4.2.3. Hybrid PI-DeepONets for the failure mode

The results demonstrate that both PINNs and PI-DeepONets can
effectively solve the bowed mass-spring model. However, for
Fp = 1000, PI-DeepONets fails to converge, while PINNs require
time-marching and causal training. From a physics perspective,
the nonlinear bow-string friction interaction is known to induce
stick-slip behavior [8]], which defines the bowing characteristics or
texture of the sound. In the eighth row of Fig. 5] we highlight
the slip phases corresponding to various bow force Fp scenar-
ios, using the relative velocity n derived from the FDM simula-
tion over the same time duration. The identification of stick-slip
phases follows the criteria described in Section[2]and Fig.[2] where
the slip phase is defined for n € [—0.12,0.12]. It is observed that
in the bowed mass-spring model, a larger bow force F'p leads to
a shorter slip phase, indicating that the system spends more time
operating within the highly nonlinear region. This, in turn, leads
to failure modes. The heightened complexity further challenges
PI-DeepONets, making it harder for them to generalize across the
broader goal space compared to PINNs.

A common approach to mitigating this issue is extending the
framework by incorporating data-driven methods. For instance,
integrating observation solutions from FDM as an additional term
in the loss function term can help guide the network toward the
expected solution, transforming the approach into a hybrid unsu-
pervised—supervised training scheme. This idea has been well ex-
plored in PINNS research [20], where supervised training has been
shown to significantly ease optimization. Therefore, we add

1. 1 .
Lob, = Na p—pl, Lov = No q—d; (16)

where p and ¢ are obtained from FDM with a high sampling rate,
given zero initial conditions and ¢ € [0, 0.1]. The results are shown
in Fig.|7| The evaluation metrics comparing the hybrid DeepONet
with the high sampling rate FDM under zero initial conditions are:
NMSE(p) = 6.88x1072, NMSE(q) = 1.72x107%,NCC(p) =

FDOM
F=1000 PINN
hybrid-DeepONet

plms=1]
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o
\
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Figure 7: Comparison of simulation results for /g = 1000: FDM
vs. PINNs vs. hybrid DeepONets.

99.66% and NCC(q) = 99.91%. Clearly, the hybrid DeepONets
demonstrate accurate predictions.

5. DISCUSSION AND CONCLUSION

In this study, PINNs and PI-DeepONets are utilized to solve the
nonlinear bowed one-degree-of-freedom mass-spring system. The
equation-solving task is formulated as an optimization problem
and carried out within the framework of physics-informed deep
learning. Scenarios with different bow forces have been investi-
gated using both PINNs and PI-DeepONets.

The results show that while PINNs successfully solve the
problem across all cases, PI-DeepONets perform well for low bow
forces but struggle at higher bow forces. We further analyze the
deep learning dynamics by examining the Hessian eigenvalue den-
sity and visualizing the loss landscape perturbed along the direc-
tions of the dominant Hessian eigenvalues. The presence of large
Hessian eigenvalues and sharp minima in the loss landscape sug-
gests ill-conditioned optimization. This highlights the challenge
for purely physics-informed deep learning techniques for model-
ing the nonlinear bow-string friction interaction.

Although PINNs can handle scenarios with high bow force,
they require additional strategies, such as causal training and the
use of short time windows in the time-marching scheme to opti-
mize effectively. While PINNs are limited by fixed ICs and face
increasing computational costs as the number of time windows
grows, PI-DeepONets excel in generalizing across varying ICs but
may fail in highly ill-conditioned scenarios. Our findings suggest
that a hybrid approach, combining the strengths of both physics-
informed and data-driven methods, can alleviate the limitations of
PI-DeepONets for higher bow forces.

As this is an initial exploratory study, our primary objective is
to investigate the potential of physics-informed deep learning ap-
proaches for capturing nonlinearities in string instruments. There-
fore, we do not yet demonstrate the use of the trained network
for sound synthesis in real-world applications, though we defi-
nitely plan to pursue this in future work. For the deep learning
approaches employed in this paper, we train a surrogate neural
network to model the physical system, embedding the governing
physical laws directly into the training process. While the train-
ing phase can be complex, requiring thoughtful strategy design
and careful hyperparameter tuning, once trained, the model can
be used for inference without explicitly solving the physics. This
allows sound synthesis to be performed efficiently by simply run-
ning the network, without the need to solve equations in real-time,
sample by sample, as is required in traditional numerical methods
like FDM. Since the physical dynamics are already captured dur-
ing training, the inference stage will be significantly faster, making
deep learning approaches highly promising for achieving real-time
operation, an essential yet challenging goal in physics-informed
sound synthesis. We do not include inference in this work, as it
falls outside the scope of this paper. However, we are actively
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working on it and plan to explore it in future studies.

Furthermore, by emphasizing the differences between PINNs
and PI-DeepONets in the solution space, we argue that PI-
DeepONets are more suitable for sound synthesis applications due
to their ability to cover a broader solution space. Considering
the nature of musical signals, which typically include transient,
steady-state, and decay stages while remaining predominantly pe-
riodic, DeepONets are particularly well-equipped to capture these
characteristics. Moreover, DeepONets demonstrate a strong abil-
ity to train a single model capable of solving multiple systems gov-
erned by the same equation with varying parameters, making them
highly adaptable for sound synthesis. On one hand, the results un-
derscore the potential of physics-informed deep learning for mod-
eling nonlinear physical processes in musical acoustics. On the
other hand, the practicality of a purely physics-informed approach
at the current technological level may vary depending on the spe-
cific task, as challenges remain in capturing complex nonlineari-
ties. To translate these insights into practical sound synthesis ap-
plications, a hybrid approach that combines physics-informed and
data-driven methods presents a more viable and effective path for-
ward. Looking ahead, the next step will be to train a hybrid model
that incorporates a variety of physical parameters as input, further
enhancing its flexibility and applicability.
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