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ABSTRACT

Estimations of panning attributes are an important feature to ex-
tract from a piece of recorded music, with downstream uses such
as classification, quality assessment, and listening enhancement.
While several algorithms exist in the literature, there is currently
no comparison between them and no studies to suggest which one
is most suitable for any particular task. This paper compares four
algorithms for extracting amplitude panning features with respect
to their suitability for unsupervised learning. It finds synchron-
icities between them and analyses their results on a small set of
commercial music excerpts chosen for their distinct panning fea-
tures. The ability of each algorithm to differentiate between the
tracks is analysed. The results can be used in future work to either
select the most appropriate panning feature algorithm or create a
version customized for a particular task.

1. INTRODUCTION

The vast majority of recorded music available today was recorded
and produced in stereophonic format. The musicians and produ-
cers involved will often pay close attention to the placement of
sound objects in the stereo field, and various pieces of equipment
such as goniometers, phase scopes, and stereo balance indicators
have been standard equipment in recording studios for decades.
There is therefore a wealth of spatial information encoded in the
final recording. Extracting and disentangling that information has
been the subject of research for many years, in various different
guises.

A typical use case is classification, where stereo features have
been used as a predictor of genre [1} 2 [3]], artist/composer/DJ
[2L 4], and decade [3]. Additionally, panning features have been
used on their own merit (as opposed to predictors of another fea-
ture) for tasks such as source separation [6| [7], upmixing [8]], and
music similarity/recommendation [94]. The classification of pan-
ning features themselves has also been studied as a precursor to up-
mixing, source separation, and audio enhancement [10,[11]], giving
the ability to select appropriate algorithms based on audio content.

In the aforementioned cases, the audio analysed has either
comprised single excerpts or lists of 1000-2000 tracks with labels
assigned. However, in recent years much bigger musical data-
sets have become available, e.g. [12| [13], which contain 55000
and 100000 tracks respectively. These datasets do not contain any
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metadata regarding panning features, nor any similar information
such as recording methods/style. While they do offer genre and
date tags, panning features on their own have previously shown
low correlation with genre and decade [2} I5], from which we can
infer that genre and date cannot be reliably used a proxy for pan-
ning features. If one wishes to use these datasets for the aforemen-
tioned use cases, there is hence a need to perform unsupervised
learning on the extracted panning features, and for this to be suc-
cessful we must understand the abilities and limits of the extraction
method being used.

Several examples of panning feature extractors for stereo au-
dio signals exist in the literature [1} 14} 9, 5]}, but as yet there has
not been a comparison of them and no discussion of what pan-
ning features they are able to detect. The aim of this paper is to
provide such discussion. It will begin by summarizing the relev-
ant literature in Section [2] describing and drawing links between
existing panning feature extraction algorithms. Section [3]presents
examples of commercial music chosen for their different uses of
amplitude panning, plus the methods used to compare the panning
feature algorithms. Section 4] shows the results of the analysis and
Section [3] will discuss some overall trends that emerged across all
algorithms. Concluding remarks are offered in Section|[§]

2. PREVIOUS WORK

[8L [15] are seminal works describing the ‘panning index’ — a de-
scription of amplitude panning for each time-frequency bin in a
stereo spectrogram. [8]] also presents the ‘ambience index’ — a
measure of inter-channel correlation in time-frequency (TF) bins.
While they target re-synthesis and upmix as use cases, the underly-
ing techniques have become the basis for many applications since.
[6] is another seminal work which describes a frequency-azimuth
plane constructed from phase cancellation of delayed stereo TF
planes. Similarly, it targets re-panning and re-synthesis but has
since been repurposed. [l [2] reuse the panning index from [§]
(renamed to ‘Stereo Panning Spectrum (SPS)’) and derive a set
of Stereo Panning Features (SPF) that are used for genre clas-
sification and Music Information Retrieval (MIR). [14] details a
method to estimate the perceptual stereo width of a music record-
ing by forming a Panning Histogram (PH) based on the frequency-
azimuth plane from [6]. Another PH method (this time based on
the SPS from [[1]) is described in [9 [16]], specifying the measure-
ment of music similarity as the primary use case. It contributes
an extra step of converting the PH into Panning Coefficients (PC)
through cepstral analysis, stating that this allows the resulting vec-
tor to be used with any generic classification algorithm. In a sim-
ilar vein (and with classification as a use case) [5]] combines coch-
leagram differences with an analysis of phase differences between
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channels to form two feature sets - the ‘Amplitude Stereo Features
(ASF)’ and ‘Phase Stereo Features (PSF)’.

(17,111 10] collectively define a new paradigm of classifying
regions of audio whereby stereo mixtures are modelled as combin-
ations of centre, panned, and uncorrelated sources. Even though
genre classification is used as an example use case, they specific-
ally state that the class representing a combination of all source
types (i.e. most music recordings) is very difficult to identify and
therefore omitted from the model.

Similar to the phase-based features defined in [3], there are a
group of algorithms based on the emulation of a studio goniometer;
[4} 13] use both a goniometer box-counting technique and inter-
channel correlation analysis to derive a time-varying measurement
of ‘spaciousness’. Interestingly though, [[18]] found that subjective
impressions of spaciousness in various musical styles were largely
contradictory to the results of goniometer analysis.

More recently, Machine Learning (ML)-based techniques for
disentangling spatial information from audio content have been
demonstrated. With a primary use case of upmixing stereo to mul-
tichannel, [19]] demonstrates that a latent vector formed by running
multichannel audio through one half of the learned neural network
represents the spatial information contained in the original signal.
Similarly, [20]] takes a stereo microphone input and regenerates
one channel from the other by learning an inter-channel spatial
representation. Mirroring our problem statement, [20] specifically
mentions a lack of labelled real-world data as motivation for the
use of unsupervised learning.

2.1. Selected algorithms

This paper will focus on four algorithms that estimate panning fea-
tures from stereophonic commercial music recordings and do not
require training on a dataset. Specifically, PH [14] PC [9], ASF [5],
and SPF [1]]. For mathematical definitions the reader is referred to
the original papers, but a summary of each is given here.

2.1.1. Panning Histogram (PH) — Sarroff, 2008 [14l]

The left and right channels are split into chunks and transformed
into the frequency domain using a Fast Fourier Transform (FFT).
Each FFT frame is converted into a frequency-azimuth (FA) plane
through phase cancellation techniques. The left and right FA planes
are concatenated, and a histogram is calculated across all frames
and all frequencies. The result is a histogram of energy at each
azimuth bin.

Note: The paper continues to collapse the histogram into a
single scalar representing overall width, but we will not consider
that here since the intent is to compare the PH vector with other
high-dimensional representations of panning features.

2.1.2. Panning Coefficients (PC) — Gomez, 2008 [9|]

The left and right channels are split into chunks and transformed
into magnitude spectrograms using a Short-time Fourier Trans-
form (STFT). The ratio of power spectra is calculated for each
frame, resulting in an azimuthal panning factor each frequency
bin. These values are warped by a function that accounts for the
human perception of the direction of arrival of sounds. Each frame
is then converted to an energy-weighted histogram and the mean
over time is taken. The histogram is then converted to a compact
representation by performing cepstral analysis and truncating the
results to length 20.

2.1.3. Amplitude Stereo Features (ASF) — Tardieu, 2011 [5|]

The ASF are created from a stereo cochleagram. Left and right au-
dio channels are split into frequency sub-bands using gammatone
filters spaced equally on the Equivalent Rectangular Bandwidth
(ERB) scale. The amplitude difference of the two cochleagram
channels is taken to produce a Cochleagram Difference (CD). The
ASFs are created by taking the mean and standard deviation over
various axes of the CD. The mathematical definition of a coch-
leagram is not given in [5]], so for this paper we have followed the
steps in [21]], creating a cochleagram directly from time domain
audio as opposed to using an FFT. [5]] also does not state the ex-
act form of the resulting vector, so for this paper all features are
simply concatenated into a single vector.

2.1.4. Stereo Panning Features (SPF)— Tzanetakis, 2007 [1|]

The left and right channels are converted into complex TF regions
by chunking, windowing, and the STFT. These two TF regions are
converted into an SPS, which is then split into high, mid, and low
frequency bands. Each sub-band (along with the full spectrum)
are collapsed by calculating the Root Mean Squared (RMS) across
the frequency dimension, and smoothed in time by calculating a
running mean and standard deviation over M frames. The mean
and standard deviation over time are then calculated, resulting in a
16-dimensional vector.

3. METHOD

To assess each algorithm they are run on a selection of musical
excerpts exhibiting panning features that it would be useful to dif-
ferentiate between. As a way of delineating the entire panning
feature gamut, we use two ‘anchor tracks’ - one strongly mono
and one strongly stereo. The other tracks each represent an inter-
esting panning feature. For each algorithm, the panning features
for all tracks are calculated and considered to be points in an N-
dimensional feature space. The Euclidean distances (D) between
pairs of tracks are calculated, and the set for each algorithm is nor-
malized so that D € [0, 1]. Specifically, it is hypothesized that

1. The anchor tracks should be located farthest apart in the
feature space

2. The panning feature tracks should be well separated and
evenly distributed between the anchors

Any pair with low separation (i.e. the algorithm cannot dif-
ferentiate between them) is further examined to find out why. We
define a low separation to be D < 0.1.

3.1. Musical excerpts

All excerpts are defined by their title, artist, release year, and tim-
ing information. For the rest of the paper they will be referred
to by abbreviated title. The panning features they exhibit are also
defined here. Anchor tracks are denoted by “*’ for mono and “**’
for stereo.

e 'Round Midnight" (RM"), Miles Davis, 1957, 0:00-0:30. A
jazz piece recorded in mono.

e This Is The Thing (TITT), Fink, 2007, 1:00-1:30. An acous-
tic song with studio reverb added. The vocal switches from
single-tracked to multi-tracked with moderate amplitude
panning approximately halfway though the excerpt.
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e Laser Beam (LB), Low, 2001, 0:00-0:30. Electric guitar,
bass, and vocals with an enveloping sound created mostly
by reverberation and multi-miking, but only subtle amp-
litude panning.

* Manifesto (M), Chilly Gonzales, 2025, 1:00-1:30. Solo
upright piano recorded live on stage with close stereo mi-
crophones. Individual notes are audibly separated in space
even though no studio panning has been applied.

e Cut And Clicks (CAC), Tetsu Inoue, 2000, 0:00-0:30. An
electronic piece that is characterized by heavy use of ex-
treme panning, unnatural sounds, and singular audio events
with very short durations.

* Fly Me To The Moon (FMTTM), Frank Sinatra, 2008, 1:00-
1:30. A full big band recorded live. Most instruments are
statically panned to a fairly strong degree.

o [ Saw Her Standing There™ (ISHST""), The Beatles, 1963,
0:00-0:30. A pop song with strong, rudimentary panning.
Drums, bass, and lead guitar are panned hard left, while
vocals and rhythm guitar are panned hard right.

We define ‘natural panning’ to mean that recorded instruments
that have been amplitude panned to a static position in the final
recording. Examples of natural panning are 77T, FMTTM, and
ISHST". The counterpart is ‘unnatural panning’, which we use to
refer to sounds that move very fast between left and right. CAC is
an example of unnatural panning.

All recordings have a sample rate f; = 44100 Hz and were
normalized to an average loudness of -23 Loudness Units Full
Scale (LUFS) before processing according to [22} 23]].

3.2. Algorithm parameters

Each algorithm is defined by a set of input parameters, and the val-
ues used for this paper are shown in Table[T] For precise meanings
of each one, the reader is directed to the original papers.

Algorithm Parameters Dimensions

PH [14] FFT size = 1024 129
hop size =512

azimuth bins = 129

FFT size = 1024 20
hop size =512

azimuth bins = 129

cepstrum coefficients = 20

Low f. =30Hz 272
High f. = 11050Hz

number of bands = 70

chunk length = 20ms

hop length = 10ms

FFT size = 1024 16
hop size = 512

M =40

low band = 0-250 Hz

mid band = 250-2500 Hz

high band = 2500-22050 Hz

PC 9]

ASF [3]

SPF [T]

Table 1: Parameters for panning algorithms

4. RESULTS

The Euclidean distances between pairs of tracks in each feature
space are shown in Fig. [T Within each feature space, distances
have been normalized to the range D € [0, 1]. Cells are coloured
in greyscale with white and black representing 0 and 1 respect-
ively, and track titles are abreviated.

Fig.[[]shows that some panning feature algorithms have a clear
bias towards one of the anchor tracks. (visible as a much darker
section in otherwise pale matrix). A bias towards the mono an-
chor (i.e. a dark horizontal line on the bottom row) means that all
panning feature tracks appear ‘very mono’ to the algorithm. Con-
versely, a bias towards the stereo anchor (i.e. a dark vertical line
in the left column) means that all panning feature tracks appear as
‘very stereo’ to the algorithm.

To quantify this, we define a ‘bias score’ (B) according to
Eq. (I). Firstly the mean distances from each anchor track to all
panning feature tracks are calculated, then B is defined as the nat-
ural logarithm of the ratio of mean mono distance (D,,) to mean
stereo distance (D). A score of B = 0 means no bias, a positive
score (B > () means a bias towards the stereo anchor and negat-
ive score (B < 0) means a bias towards the mono anchor. This is
calculated by Eq. (T) where T' = {t : t € T} is the set of panning
feature tracks, D, ; is the distance between the mono anchor and
a panning feature track, and D ; is the distance between the stereo
anchor and a panning feature track.

- 1
Do = 177 > Do

teT
_ 1
D= D, 1)
K=t
B =1n &
D

S

The scores for each algorithm are shown in Table 2] alongside
their interpretations.

Algorithm  D,, D, B Interpretation

PH[I4] 072 026 102
PC [0] 091 0.16 173
ASF[5] 031 087 -1.04
SPF [T]] 050 0.64 -0.25

strong stereo bias
very strong stereo bias
strong mono bias

slight mono bias

Table 2: Bias scores for all panning feature algorithms

From Fig.[T]it is simple to test hypothesis [T](the anchor tracks
should be the furthest apart) by finding the cell with a value of 1.
It is also possible to assess hypothesis [2] (the other tracks should
be well separated) by finding cells with low values. Each panning
feature algorithm will be assessed separately.

4.1. Panning Histogram [24]

Fig.[T]shows that this is the only algorithm for which hypothesis LI]
is not satisfied. Instead of the two anchor tracks (RM " and ISHST )
having the largest distance, RM" and CAC are in fact the two most
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Figure 1: Distance between pairs of tracks in the feature spaces of the four panning feature algorithms.
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Figure 2: PHs of RM * CAC and ISHST"", demonstrating that CAC
has been wrongly detected as monophonic.
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Figure 3: Stereo Panning Spectrum of a short section of CAC and
ISHST™".

separated tracks. To determine why this was the case, the PHs of
all three tracks are plotted in Fig. 2}

From this diagram we can observe two important phenom-
ena. Firstly, CAC (which is characterized by extreme and unnatural
panning) actually appears close to mono in its PH. By inspecting
the panning spectrogram (a section of which is shown in Fig.[3) we
see that when hard panning occurs, time-frequency frames panned
hard left and right are roughly evenly distributed. Hence, when
the mean over time is taken, the hard-panned frames cancel each
other out and all energy appears to be located in the centre. This
differs from e.g. ISHST"" which consistently has energy panned to
both channels simultaneously and hence has two histogram peaks
on the left and right.

Secondly, even though RM" and CAC have similarly-shaped
PHs, their Euclidean distance is very large. This is because the
central peaks of each track appear in different azimuth bins. Since
each bin is a separate dimension in the feature space, these two
tracks effectively appear as two vectors with large amplitudes point-
ing in different directions. From this we can determine that the
Euclidean distance is not a good measure of similarity for Panning
Histograms, and we will therefore not assess hypothesis 2]

4.2. Panning Coefficients [9]

Inspection of Fig. reveals that, as hypothesized, RM" and ISHST™
are the two tracks with the most separation. However, as Table 2]
shows, it also has a strong bias towards the stereo anchor. The
tracks TITT, LB, M, and FMTTM all appear in close pairs, imply-
ing that PC might have trouble differentiating between tracks that
use moderate, but different, amplitude panning techniques. Reas-
suringly though, tracks that include extreme panning are separated
from moderately-panned tracks, with D ~ 0.2.

The PC algorithm is based on a Panning Histogram that is
quantized by truncation in the cepstral domain. To assess the effect
of this, we can reverse the cepstral process using Eq. (Z) where c s
the vector of cepstral coefficients that has been truncated to length
L. First, a pseudo-spectrum s is created by taking the exponen-
tial of the real part of the Discrete Fourier Transform (DFT) of
c. s is then truncated to half its length to recreate a histogram,
and normalized so that the total area is 1. The result is a Panning
Histogram h with L /2 azimuth bins.
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c=(c1,c2,...,cL)
s = exp(Re(DFT(c))) @)
h— S1:L/2

% 231:L/2

Fig. E] shows the quantized and original PHs for ISHST™ and
its three closest neighbours. From these diagrams it is clear to
see why the PC algorithm is biased towards the stereo anchor -
the anchor itself has had its panning energy moved from the side
lobes towards the centre, and hence the detected panning features
are more akin to the moderately-panned tracks (which are not so
affected by the quantization).

[ quantized
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LB M

0.02 1 b
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Figure 4: PHs of ISHST™ and its three closest neighbours before
and after cepstral quantization.

4.3. Amplitude Stereo Features [5]

Similarly to PC, the ASF distance matrix (Fig.[I) shows that the
two anchor tracks are indeed the furthest separated. Conversely
though, Table [2] shows that ASF has a bias towards the mono an-
chor. The separation of all tracks except ISHST"" is, however, quite
adequate, with a range of D € [0.13,0.47].

Curiously, FMTTM and ISHST" have a high separation (D =
0.84) despite both exhibiting strong natural panning. Fig.[5|shows
a visual representation of ASF for these two tracks. The panning
features ‘mean over time’ and ‘standard deviation over time’ (see
[5]) for each cochlea band are depicted as dots with error bars.
From this diagram it is clear the two tracks have roughly opposite
panning along the frequency axis. For example, FMTTM has a
double bass panned to the right, while ISHST " has a bass guitar
panned to the left. This difference in panning direction is certainly

104 4 FMTTM | - ISHST™
S
7 10% 4 E
O
=1
=
4 e
— o ® —
102 5 —3— 12—
—— ——
—e— —e—
—— —e—
e e
T T T T T T
-5 0 5 -5 0 5
Panning Panning

Figure 5: ASF for FMTTM and ISHST " showing similar frequency
bands panned in opposite directions.

a contributor to the high separation between these two tracks, and
hence the overall mono bias of ASF.

It is also notable that the panning variation for both tracks
shown in Fig. [5]is quite high, when we can hear in the original
audio that instruments are panned statically. This is most likely
caused by overlapping frequency components in the left and right
spectra — a common issue discussed in previous literature (8 |6,
25]. Certainly the phenomenon is not unique to the ASF algorithm
but nevertheless is illustrated particularly well by this diagram.

While not too close by our standards, CAC and TITT (D =
0.13) are the closest pair. This is surprising since one would ima-
gine that the moderate, natural panning of 7ITT would be well
separated from the extreme, unnatural panning of CAC. Examin-
ing their ASF plots (see Fig. [§) reveals that while the panning
variation of each track is quite different, they both exhibit mean
panning that is roughly centred, mirroring the PH error described
in Section [f.1] One possible explanation is that the fast panning
of CAC manifests more as phase difference than amplitude differ-
ence, which would match the dispersion introduced by the rever-
beration in 7/7T. While panning variation for CAC is much higher
in the lower frequencies, it could be the case that the high number
of dimensions in ASF is acting to quash those differences.

10* 4 TITT | 4 CAC

Hz)

103 4 E

== %

107 5 p—
-

Frequency (

Panning Panning

Figure 6: ASF for TITT and CAC, both exhibiting average central
panning.

DAFx.5



Proceedings of the 28" International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

RM

ISHST-23 -JKIA 0.00

ISHST-26 -JURIM 0.19 | 0.00

ISHST-29 0.35 | 0.16 | 0.00
E & B E

wn w2 w2

= = =

(] [\ (3]

w [=>} =}

Figure 7: Distance matrix comparing RM" (at -23 LUFS) to
ISHST™ at -23, -26, and -29 LUFS.

One important factor in the use of ASF is that its calculation
(defined in [3)]) does not include any step to account for the overall
loudness of the audio. To demonstrate the effect of this, we can
calculate another distance matrix comparing RM" to several ver-
sions of ISHST"" that are normalized to different loudness levels.
Fig. [7] visualizes this and clearly shows that the relative loudness
of two tracks affects their distance in the feature space. All tracks
analysed in this paper were normalized to equal loudness to ac-
count for this, but that might not be possible in a real-world use
case, e.g. analysing streaming audio in real time.

4.4. Stereo Panning Features [1]

The distance matrix (Fig. [T) for SPF reveals that the two anchor
tracks are indeed the furthest separated, and Table [2] shows the
lowest bias. There are also no track pairs with a low separation.
However, the distance matrix does show a generally high separa-
tion for CAC. This implies that SPF is able to differentiate between
natural and unnatural panning quite well. In particular, CAC is
maximally separated from ISHST"™ even though both contain ex-
treme panning.

The definition of SPF includes estimations of both ‘short-term
panning’ (the running standard deviation over M frames) and ‘long-
term panning’ (the running mean over M frames). These are cal-
culated over four frequency bands (fullband, lows, mids, and highs),
and the global means and standard deviations of these comprise the
final feature vector. We can therefore visualize the SPF as a scatter
plot with the vertical position of a point denoting the amount of
panning in each frequency band and error bars denoting panning
variation, with short- and long-term values separated.

Fig. [ shows the SPF plots for CAC alongside the two anchor
tracks. It reveals that indeed, the unnatural panning of CAC is
visible as large error bars in all dimensions whereas ISHST " has
much higher average panning and relatively low variation, thus
demonstrating how SPF is able to differentiate between natural and
unnatural panning.

RM" has low, but non-negligible values in all dimensions. In-
spection of the original formula [[1]] shows that a truly mono signal
would produce an SPF vector of all Os, revealing that RM" is, in
fact, not entirely mono. By listening to the difference between the
left and right channels, we can hear that the original mono record-
ing has had a decorrelation effect applied at the mastering stage.
We can therefore conclude that SPF is sensitive to this kind of ef-
fect.
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Figure 8: SPF plots for RM", CAC and ISHST™ showing clear
separation between all three.

5. DISCUSSION

Table [3] shows a summary of each algorithm. For the purposes of
unsupervised learning on commercial music, SPF has shown the
most promise as it has the lowest bias score and good separation
between all the panning feature tracks. The features related to pan-
ning variation over time appear to be important as they can help
avoid issues such as the misidentification of unnatural panning as
monophonic audio (see Section [-T)).

Each algorithm explicitly chooses whether to represent the
panning direction or just the panning amount. ASF even includes
features for both. Likewise, some algorithms act on frequency sub-
bands whereas others process the entire spectrum. When the in-
tention is to use panning features for unsupervised learning, the
importance of both panning direction and frequency sub-bands is
application-specific; any of the algorithms could be modified to
include or exclude these two features.

The computational complexity of the algorithms was not ad-
dressed in this paper, but varied significantly among them. SPS-
based descriptors ([1}19]) are reliant on an STFT for their TF rep-
resentation and hence are efficient but sometimes difficult to recon-
cile with human perception, whereas algorithms based on coch-
leagrams ([S]) produce more perceptually relevant results but re-
quire very large banks of time-domain filters.

An additional variable not covered by this paper is the dur-
ation of analysis. For the purposes of this experiment, 30s was
chosen to roughly match [1], although [9] mentions that any dur-
ation between 2s and the entire recording is acceptable and [5]
shows examples of entire songs.

All algorithms differ greatly in the number of dimensions rep-
resented in the final panning features. When calculating Euclidean
distances in N-dimensional space, it has been proven that the in-
clusion of variables which provide no additional accuracy both in-
creases the distance between points and raises the likelihood of
attributing significance to spurious measurements [26]. A balance
must therefore be struck between the resolution of the panning fea-
tures and the ease of differentiating between tracks. Again, each
algorithm can be modified to increase or decrease the dimension-
ality.
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Algorithm Frequency bands Variation  Panning Azimuthal  Loudness Notes
over time  direction  resolution invariant

PH [14]  Fullband No Yes High Yes Cannot use Euclidean distance.
Azimuthal resolution configurable.

PC [9] Fullband No Yes Low Yes Strong stereo details are lost.
Azimuthal resolution configurable.

ASF 5] ERB, 70 bands Yes Yes High No Strong mono bias.
Very large feature space.

SPF [1]  Lows, Mids, Highs  Yes No High Yes Relatively low bias.

Separates natural/unnatural panning well.
Sensitive to decorrelation effects.

Table 3: Summary of properties for all panning feature algorithms.

6. CONCLUSION

Four panning feature extraction algorithms were tested with re-
spect to their use for unsupervised learning. They were run on five
tracks that exhibit interesting panning features, plus two ‘strongly
mono’ and ‘strongly stereo’ anchor tracks. The algorithms’ res-
ults for individual tracks were analysed to assess what panning
features each algorithm is able to differentiate between. Each al-
gorithm was assigned a ‘bias score’ based on how the panning fea-
ture tracks were distributed within the anchor tracks. SPF from [/1]]
showed the most promise, although it lacks differentiation between
left and right and has relatively low frequency resolution.

In future work using panning features for unsupervised learn-
ing we recommend setting precise requirements for relevant pan-
ning features and choosing an algorithm accordingly based on the
results given here. Alternatively, algorithms may be modified or
combined to suit a specific need. The inclusion of other spatial
descriptors such as those based on phase differences or generated
via ML might also prove fruitful. To that end, a much larger survey
of spatial analysis techniques would be beneficial.

In the cases where the original literature performed experi-
ments on a commercial music collection [1} 5], it is not possible to
fully reproduce their results since the exact tracks are unspecified.
Analysis of modern, open datasets (e.g. [12,|13]]) would therefore
be advantageous and would strengthen the results obtained in the
current experiments.
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