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ABSTRACT

The common-slope model is used to model late reverberation of
complex room geometries such as multiple coupled rooms. The
model fits band-limited room impulse responses using a set of
common decay rates, with amplitudes varying based on listener
positions. This paper investigates amplitude estimation methods
within the common-slope model framework. We compare sev-
eral traditional least squares estimation methods and propose using
LINEX regression, a Maximum Likelihood approach using log-
squared RIR statistics. Through statistical analysis and simulation
tests, we demonstrate that LINEX regression improves accuracy
and reduces bias when compared to traditional methods.

1. INTRODUCTION

The advancement of Virtual Reality (VR) and Augmented Reality
(AR) technology saw great demand in room acoustics modeling.
VR/AR applications require perceptually accurate and computa-
tionally efficient sound field rendering to support highly dynamic
real-time environmental changes and user interactions.

The recently proposed common-slope model by [1] shows po-
tential for real-time late reverberation rendering, particularly in
complex acoustic environments. It is well-established that room
impulse responses (RIRs) exhibit exponentially decaying tails [2,
3]. Traditional statistical models represent late reverberation as ex-
ponentially decaying Gaussian noise, assuming a single dominant
decay rate within a frequency band [3, 4]. Empirical studies sug-
gest that multiple decay rates often coexist, especially in coupled
spaces or non-diffuse environments [5, 6], and the common-slope
model extends on this finding.

The common-slope model builds on the modal decomposition
of RIRs, which reveals that amplitudes and decay rates are sep-
arable components [7, 8, 9]. The key assumption of this model
states that decay rates across different RIRs depend only on the
property of the room, leading to the phenomenon that prominent
modes within the same frequency band tend to cluster around a
few significant decay rates, hence the term common slopes [1, 2].
In contrast, the amplitudes of these decay components vary with
the source and receiver locations. This parameterization enables
an efficient representation of room acoustics: all RIRs in a given
space can be described using a small set of common decay rates
and location-dependent amplitudes, significantly reducing the stor-
age requirements for acoustic scene rendering while maintaining
perceptual accuracy.
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The model offers flexibility in representing room acoustics,
particularly in accounting for inhomogeneity and anisotropy. By
allowing for multiple decay slopes, it can reflect variations in re-
verberation characteristics, which preserves perceptual cues re-
lated to spaciousness and surface reflectivity. Prior studies have
demonstrated perceptual relevance in complex acoustic environ-
ments such as coupled rooms [10] and in scenarios involving
smooth transitions between spaces, supporting the rendering of
changes in listener position [11].

It is straightforward that the model is parametric and requires
the identification of both the decay rates and amplitudes of the
slopes. Numerous studies have explored decay rate estimation
under different acoustic modeling frameworks. Classic meth-
ods for estimating reverberation time (RT) rely on Energy De-
cay Curves (EDCs) derived via Schroeder backward integration.
Schroeder applies linear regression to estimate a single decay rate
[4], while Xiang and Goggans analytically derive the EDC and em-
ploy Bayesian nonlinear least squares regression to handle multi-
ple decay components [5]. However, both approaches neglect am-
plitude parameter estimation. In blind RT estimation, least squares
regression on RIR at different scales remains a standard approach
[12, 13]. This paper provides a comprehensive analysis of these
statistical models, emphasizing amplitude estimation through both
analytical inference and simulations.

On top of the existing estimation methods mentioned above,
we introduce a novel regression framework for the common-slope
model. Using Maximum Likelihood Estimation (MLE), we derive
the probability distribution of an additive model error in logarith-
mic squared RIRs. Notably, the resulting negative log-likelihood
function aligns with the linear exponential (LINEX) loss function.
Under the assumption of correct model specification, our proposed
regression gives more efficient amplitude estimators compared to
conventional least-squares estimation.

The remainder of this paper is structured as follows. Sec-
tion 2 revisits the common-slope model, introducing the statistical
framework that supports the different estimation methods. Section
3 begins with an overview of least squares regression on differ-
ent scales of RIRs and some refinements according to the model
specification, then motivates and introduces the proposed MLE-
based LINEX regression approach, and finishes with a discussion
of model fitting and estimation over EDCs. In Section 4, we ap-
ply the estimation method to synthetic RIR datasets and evaluate
performance. Finally, Section 5 provides concluding remarks and
outlines potential future research.

2. REVISITING THE COMMON-SLOPE MODEL

Following the notation from [1], an RIR h(x, t) models the com-
bined effects of sound waves given a known source-receiver con-
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figuration x = (xs,xr,Ωs,Ωr), where (xs,xr) are the sound
source and receiver position in the room, and (Ωs,Ωr) represents
the direction of sound departure and arrival. For discrete time sam-
ple index t ∈ Z at sample rate fs, the modal decomposition of an
RIR gives:

hb(x, t) =

M∑
m=1

χm(x)τm(t) (1)

=

κ∑
k=1

∑
m∈Mk

χm(x)τm(t), (2)

where hb(x, t) is the band-limited RIR filtered at frequency band
fb, and each mode indexed m is an exponentially decaying si-
nusoid. χm(x) describes the amplitudes and phases of the
mode, varying only for different source-receiver configurations
x’s, briefly referred to as positions later. The temporal mode

τm(t) = exp

(
−δmt
fs

)
cos

(
ωmt

fs

)
(3)

includes modal frequency ωm ∈ R+ and decay rate δm ∈ R+ and
does not depend on position x.

The modes are grouped into κ clusters of decay rates such
that {Mk}κk=1 is a partition of all modes {1, . . . ,M}. For each
modal group Mk, we expect the decay rates can be modeled by an
average of the cluster δk ≈ 1

|Mk|
∑

m∈Mk
δm, then the sum of

modes in the same group with random phases and amplitudes can
be modeled by a band-limited white noise with an exponentially
decaying envelope, and the RIR can rewrite to:

hb(x, t) =

κ∑
k=1

Ab,k(x) exp

(
−δb,kt

fs

)
zb,k(x, t). (4)

The aggregate amplitude Ab,k(x) for the mode group k also de-
pends only on position, accounting for all the information of
χm(x) form ∈ Mk. And the exponential term is the envelope for
the decay. Notice that the number of decay rates δk’s is reduced
from the number of modes to modal groups. More often in RT es-
timation literature, the decay rates take the form of RT60s denoted
by Tk, which gives the time needed for the sound energy to decay
by 60 dB.1 The relationship between RT60 and decay rate writes
δk = 3 log(10)

Tk
≈ 6.9

Tk
.

We propose to model the noise component by standard Gaus-
sian processes zb,k(x, t) ∼ N(0, 1) that are i.i.d. across positions
x, time t and decay group k for the following argument. Con-
sider a band-pass filtered white Gaussian noise. Since filtering is
a linear operation, the resulting random process retains a Gaussian
distribution. Band-limited white noise is generally time-correlated
because of the correlation introduced by filtering. This can be fur-
ther addressed by demodulating the signal to a baseband equiva-
lent and downsampling. Specifically, consider a band-pass filtered
white Gaussian noise process centered at frequency fc with band-
width B. By demodulating this process to baseband and sampling
at twice its bandwidth 2B, the resulting process can be treated as
approximately white [14, 15].

The model also inherently accommodates non-decaying noise
components such as environmental noise or pickup noise, etc. For

1Note that the RT60 only provides a standardized and interpretable rep-
resentation of the decay rate for each modal group, the 60 dB energy decay
is not really observed in the RIR in general.

a non-decay slope, one can simply denote a slope with k = 0, and
let the decay rate δ0 = 0, the exponential envelope then becomes
constant 1.

The assumptions above give us the full distribution of a band-
limited RIR hb(x, t), and further allow us to estimate the param-
eters using a Maximum Likelihood approach. However, because
we assume independence for analytical convenience rather than
realism, the model is intended as a descriptive framework.

3. ESTIMATION MODELS

Following the last section, with the Gaussian assumption for the
noise component, (4) gives a direct result that the band-limited
RIR follows a zero-mean Gaussian distribution with time-varying
variance. To simplify notation, we omit the frequency band b and
the RIR position x after having established that the model applies
for each frequency band and each instance of RIR. The distribution
of h(t) then writes

h(t) ∼

(
0,

κ∑
k=1

A2
k exp

(
−2δkt

fs

))
(5)

This implies that all information about the amplitudes Ak is
encoded in the second-order moment of h(t), which represents the
expected energy decay profile in squared amplitude. This charac-
terization, as shown in Fig. 1(a) in energy, namely squared RIR
h2(t), forms the basis of the modeling approaches introduced in
the following subsections.

3.1. Nonlinear Least Squares Regression

Directly from (5), we have that the variance of h(t), also the ex-
pectation of h2(t), is a function of time:

Var[h(t)] = E
[
h2(t)

]
= f(t;A2) =

κ∑
k=1

A2
k exp

(
−2δkt

fs

)
,

(6)

where A2 = [A2
1, . . . , A

2
κ]

⊤ is the vector notation of squared
amplitude parameters. All estimation later is performed on the
squared amplitudes because the model function f(t;A2) is linear
in A2

k.
From here, it is intuitive to rewrite the squared RIR as a func-

tional model with a zero-mean error term:

h2(t) = f(t;A2) + ξsq(t;A
2). (7)

Since the error term E[ξsq(t;A
2)] = 0 has zero mean by design,

we could run a naive nonlinear least squares (NLS) to estimate the
amplitudes. The least squares estimators write:

Â2
LS = argmin

A2

T∑
t=1

ξ2sq(t;A
2). (8)

However, this method yields poor results, since the error is
highly skewed due to h2(t) being nonnegative, and it exhibits an
exponential decaying envelope, making contributions from later
time samples heavily underweighted, as shown in Fig. 1 (a). This
leads to a regression that is heavily biased toward the early part
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of the signal. Such behavior is expected, as NLS yields asymp-
totically efficient estimators only under the assumption of ho-
moskedastic Gaussian errors—conditions under which NLS coin-
cides with MLE [16]. From the Gaussian assumption on h(t), it
follows that h2(t) is Gamma-distributed with variance

Var[h2(t)] = 2 (Var[h(t)])2 = 2
(
f(t;A2)

)2
, (9)

which shows significant heteroskedasticity.
One way to tackle this is to adopt the weighted least squares

(WLS), where a time-dependent weight function w(t) compen-
sates for the heteroskedasticity introduced by the exponentially de-
caying envelope:

Â2
WLS = argmin

A2

T∑
t=1

[w(t)ξsq(t)]
2 . (10)

However, selecting an appropriate weight function is nontrivial:
the variance of the noise is dependent on the decay amplitudesA2

k,
making it difficult to prescribe weights a priori. As a result, WLS
typically requires iterative schemes, which increase both compu-
tational complexity and analytical intractability [16].

As an alternative strategy, transforming the RIR into a scale
with weaker time-dependent variance can improve LS robustness.
Error structure becomes more homoskedastic, but a corresponding
bias correction must be introduced into the functional model to
ensure consistency of the estimator [17]. In the following subsec-
tions, we examine two such transformations: the power-law scale
and the logarithmic scale.

3.1.1. Nonlinear Least Squares on Power-Law Scale

A power-law scale model was proposed in [12], which models the
absolute power of RIR |h(t)|α as a generalization of modeling the
second-order RIR h2(t). This method attenuates the drastic vari-
ance change in the RIR, meanwhile avoiding the numerical prob-
lem of taking the logarithmic values near zero. Their empirical
results show that choosing power value around α = 0.5 is a useful
compromise between linear and logarithmic amplitude scaling.

With the power-law scaling, we need to revise the functional
model analytically before performing least squares. Consider first
a simpler case of a zero-mean Gaussian variable Z ∼ N(0, σ2),
the absolute moments of Z are given by

E[|Z|ν ] =
(
2σ2) ν

2
Γ
(
ν+1
2

)
√
π

, (11)

where Γ(·) is the Gamma function [18]. Applying this for ν = 0.5
to the RIR model, we arrive at the following functional form

E
[
|h(t)|0.5

]
=
(
2f(t;A2)

)0.25 Γ(0.75)√
π

, (12)

with a zero-mean i.i.d. amplitude dependent error term ξpow:

|h(t)|0.5 =
(
2f(t;A2)

)0.25 Γ(0.75)√
π

+ ξpow(t;A
2). (13)

Note that the functional model still takes the form of variance at
the corresponding power level with a constant scaling factor. The
least squares estimator for amplitudes in this model is analogously
given by

Â2
LS-PL = argmin

A2

T∑
t=1

ξ2pow(t;A
2). (14)

An example of the regression model is shown in Fig. 1(b).
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Figure 1: Regression models on different scales of an example RIR,
where the statistical expectation is the model function. (a) shows
the model for squared RIR gives poor results because of dispro-
portionate errors over time, (b) shows the attenuated change in
variance in power-law scaled RIR, and (c) shows the equivariance
of log-squared RIR, which makes regression more eligible.

3.1.2. Nonlinear Least Squares on Log-Energy Scale

Even better than the power-law transformation, the squared RIR
display full equivariance property on the logarithmic scale (or in
dB unit), hence running a regression on log-squared RIR, i.e., log-
energy scale is also intuitive.2 The equivariance of log-squared
RIR makes sure that we can have a homoskedastic model error
when correctly specified.

Similarly to the power-law transformation, again, we need
to derive the functional model analytically to perform a least
squares regression. Consider again a zero-mean Gaussian vari-
able Z ∼ N(0, σ2), the transformed variable on log-energy scale
then writes Y = logZ2. For a chi-square distribution variable
Xk ∼ χ2(k) with k degree of freedom (DOF), the first moment of
log chi-square gives

E[logXk] = log 2 + ψ
(
k
2

)
,

where ψ(·) is the digamma function [19]. From this, we have the
log-energy

Y = logZ2 = log(σ2X1) = log σ2 + logX1 (15)

2The relationship between RIR in dB and natural logarithmic squared
RIR is by a scaling factor of 10

log 10
≈ 4.343. All analytical discussions

in the paper are conducted using logarithms; however, the results are pre-
sented in a dB scale. The figures on a logarithmic scale are also shown in
dB units.
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Figure 2: Distributions of model error on the three scales cor-
responding to Fig. 1—chi-square, square-root absolute Gaussian,
and log chi-square—each exemplified by a standard Gaussian vari-
able Z ∼ N (0, 1). The grey area falls outside the domain of the
variable. For comparison, the red curves overlaying show Gaus-
sian approximations matched by the true mean and variance, as
would result from a least squares fit under model misspecification.

follows a shifted log chi-square distribution of DOF 1, the expec-
tation writes

E[Y ] = log σ2 + log 2 + ψ(0.5) , (16)

which takes the form of the log-variance, and adds a constant.
Analogously, we can write the log-energy RIR in a similar

functional form into a deterministic model

E
[
log h2(t)

]
= log f(t;A2) + log 2 + ψ(0.5) (17)

with a zero-mean i.i.d. error term ξlog:

log h2(t) = log f(t;A2) + log 2 + ψ(0.5) + ξlog(t;A
2), (18)

and the least squares estimator for the amplitudes is given by

Â2
LS-LE = argmin

A2

T∑
t=1

ξ2log(t;A
2). (19)

An example of the regression model is shown in Fig. 1(c).

3.2. Maximum Likelihood and LINEX Regression

The LINEX regression model is also motivated by the equivariance
property of squared RIR in logarithmic scale, but with a different
loss function on the model error. From the Gaussian assumption
of RIR h(t), we can write the full distribution of log h2(t) and
run a Maximum Likelihood (ML) estimation, which results in our
regression model.

To gain intuition, consider again the case of a zero-mean Gaus-
sian variable Z ∼ N (0, σ2). From Sec. 3.1.2, the log-energy vari-
able Y = logZ2 can then be modeled with log σ2 with a log chi-
square distributed error which does not depend on σ2, as shown in
15. Define the error on the log-energy model U = Y − log σ2,
then we can confirm this by writing the probability density func-
tion using a mapping of variables from the Gaussian density,

fU (u) = fZ(z) ·
∣∣∣∣ dzdu

∣∣∣∣ (20)

=
1√
2πσ2

exp

(
−e

u+log σ2

2σ2

)
· exp

(
u+ log σ2

2

)
(21)

=
1√
2π

exp

(
−e

u − u

2

)
. (22)
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Figure 3: A comparison between quadratic and LINEX loss func-
tion. Error on the positive side is heavily penalized by the LINEX
loss function.

As expected, all σ2 cancel out in the pdf of the error term U ,
which means that we can separate the model parameter σ2 from
the model error distribution. The corresponding negative log-
likelihood for U is also not dependent on σ2:

−ℓ(u) = − log fU (u) ∼ eu − u, (23)

which highlights a convex loss function with global minimum
at u = 0. This loss function is called the Linear-Exponential
(LINEX) function, and is mostly used for optimization problems
where error is distributed and penalized asymmetrically.

Returning to the log-energy variable Y , we can then rewrite it
into a deterministic model with an error term described above:

Y = log σ2 + U. (24)

The same method applies to the log-squared RIR. Analog to find-
ing the variance in a scalar Gaussian case, we aim to estimate the
amplitude parametersAk that determine the time-varying variance
structure of h(t). Since h(t) is modeled as a zero-mean Gaussian
process, the log-energy log h2(t) follows a scaled log chi-squared
distribution and admits the following generative form, analogously
to Y in (24):

log h2(t) = log f(t;A2) + ξlinex(t;A
2) (25)

where ξlinex(t) denotes an i.i.d. error additive to the log-variance
model, corresponding to U in (24). The resulting ML estimator
for the amplitude parameters is then obtained by minimizing the
aggregate LINEX loss

Â2
LINEX = argmin

A2

T∑
t=1

eξlinex(t;A
2) − ξlinex(t;A

2), (26)

This formulation can be interpreted as a functional regression
model, hence the name LINEX regression. In contrast to the con-
ventional NLS approach in (19), it is distinguished by the use
of a non-quadratic, asymmetric error penalty metric, as shown in
Fig. 3. The LINEX regression-based estimator aligns with the true
data structure under the Gaussian assumption of RIR h(t), and
thus is more efficient than least squares estimators.
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3.3. Fitting over Energy Decay Curve

A common practice for identifying decay parameters in an RIR is
to apply Schroeder’s backward integration and run a regression on
the resulting EDC. Despite its widespread usage, existing litera-
ture provides limited discussion on the statistical inference of the
estimation from the EDCs, particularly concerning decay ampli-
tude parameters. In this section, we address this gap by explic-
itly analyzing and evaluating the EDC fitting procedure within the
common-slope modeling framework.

The Schroeder’s backward integration, defined as shown be-
low, is performed to give the EDC d(t),

d(t) =

T∑
τ=t

h2(τ). (27)

By taking expectations and applying the common-slope model as-
sumption, we have

E[d(t)] =
T∑

τ=t

E
[
h2(τ)

]
=

T∑
τ=t

f(t;A2) (28)

=
T∑

τ=t

κ∑
k=1

A2
k exp

(
−2δkτ

fs

)
(29)

=

κ∑
k=1

A2
k ·

exp
(
− 2δkt

fs

)
− exp

(
− 2δkT

fs

)
1− exp

(
− 2δk

fs

) , (30)

where the summation in the last line follows from geometric series
properties. Defining the basis functions

Ψk(t) =
exp

(
− 2δkt

fs

)
− exp

(
− 2δkT

fs

)
1− exp

(
− 2δk

fs

) , (31)

we have the expectation of the EDC as a linear model in the basis
functions,

E[d(t)] = g(t;A2) =

κ∑
k=1

A2
kΨk(t). (32)

In practice, the basis functions Ψk(t) effectively act as exponential
decay envelopes, due to the negligible magnitude of exp(− 2δkT

fs
)

for large T [5].
In the case of a non-decay slope k = 0, setting the decay rate

δ0 = 0 would result in the basis function (31) being ill-defined,
but taking the limit for δ0 → 0+ gives

Ψ0(t) = T − t, (33)

and the comprehensive functional model for EDC would include
k = 0 in the summation in (32).

The main advantage of Schroeder’s method is that it trans-
forms model errors asymptotically into Gaussian according to the
Central Limit Theorem, while preserving the exponential decay
characteristics captured by the basis functions Ψk(t).

The variance of the EDC writes

Var[d(t)] =
T∑

τ=t

Var
[
h2(τ)

]
= 2

T∑
τ=t

(
f(τ ;A2)

)2
, (34)

exhibiting exponential decay characteristics that are analogous to
the derivation of its expectation in (30). To address this exponen-
tially decaying variance, we again take the log of EDC, yielding
an approximated expression of the variance by Taylor expansion:

Var[log d(t)] ≈ Var
[
d(t)− E[d(t)]

E[d(t)]

]
=

Var[d(t)]
E2[d(t)]

(35)

=
2
∑T

τ=t

(
f(τ ;A2)

)2(∑T
τ=t f(τ ;A

2)
)2 , (36)

where the last line gives the concentration measure of f on the
domain of (t, T ). From Cauchy-Schwarz, we know that the term
reaches lower bound 2

T−t
when f is completely flat; by expanding

the squares, it reachs upper bound 2 when all weight is on one
entry of f . Knowing that f in general has the shape of exponential
decay, we know that the term is stable in a small range within the
bounds before t gets close to T .

With the log-EDC having stable variance across time, running
a least squares is feasible. In this case, the expectation of log-EDC
is hard to derive analytically, but a second-order Taylor expansion
approximation gives

E[log d(t)] ≈ E
[
logE[d(t)]− (d(t)− E[d(t)])2

2E2[d(t)]

]
(37)

= logE[d(t)]− Var[d(t)]
2E2[d(t)]

(38)

= log g(t;A2)−
∑T

τ=t

(
f(τ ;A2)

)2(∑T
τ=t f(τ ;A

2)
)2 , (39)

where the last fraction term is a smooth function bounded in (0, 1),
hence does not contribute much to the estimation of amplitudes.
Ignoring this term, the resulting regression model is given by

log d(t) = log g(t;A2) + ξedc(t;A
2), (40)

where ξedc denotes the model error that is approximately zero-
mean and Gaussian. Note that the errors are highly correlated be-
cause of cumulative summation; hence, downsampling is common
in practice. The amplitude parameters can still be estimated by a
naive nonlinear least squares:

Â2
EDC = argmin

A2

T∑
t=1

ξ2edc(t;A
2). (41)

4. EVALUATION

4.1. Simulation Based on Decaying Gaussian Noise

We compare the estimators from Sec. 3 using synthetic data to
evaluate their accuracy and robustness under controlled decay con-
ditions.

We generate multiple datasets with N = 1000 synthetic RIRs
of chosen length and sample rate. Each RIR h(t) is modeled as a
sum of exponentially decaying Gaussian noise:

h(t) =

κ∑
k=1

Ake
−δkt

fs zk(t), zk(t) ∼ N (0, 1), (42)

where the decay rate corresponds to chosen RT60 values.

DAFx.5



Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

Table 1: Estimation bias and standard deviation [dB] in single-
slope cases. LINEX achieves lowest variance with low bias.

Estimator Bias (std. dev.) [in dB]

Concert Hall Classroom

LINEX 0.005 (0.094) 0.015 (0.357)
LS-PL −0.009 (0.301) −0.029 (0.689)
LS-LE 0.002 (0.216) −0.002 (1.122)
EDC −0.017 (0.097) −0.193 (0.369)

We evaluate the four methods introduced in Section 3 to esti-
mate the amplitude of the decays A2: LINEX regression, power-
law nonlinear least squares (LS-PL), log-energy nonlinear least
squares (LS-LE), and EDC-based nonlinear least squares. Op-
timization for LINEX regression is performed with MATLAB
R2024b fmincon function (interior-point algorithm), while other
least squares are solved with lsqnonlin (trust-region reflective
algorithm). Convergence is declared when both step norm and
change in objective function are below a set threshold, and both
optimization has per step complexity O(Tκ). Each method pro-
duces an estimate per RIR, and with the ground truth value, we can
evaluate the distribution of estimation errors across the datasets.

First, we investigate single-slope cases, where we can drop
k in the data-generating process (42). To align the synthetic data
with empirical conditions, we consider two sets of parameters with
contrasting levels of data richness:

• Concert Hall: We consider a typical mid-frequency RT60 of
approximately 2 s, with a high-quality recording environment
with SNR of 60dB [20]. The RIR length is set to 2 s to fully
capture the decay before reaching the noise floor. A sampling
rate of fs = 2 kHz is used, which is approximately double the
effective bandwidth to match the baseband equivalent. The de-
cay rate is set to δ = 3.45, corresponding to an RT60 of 2 s. The
amplitude is fixed at −10 dB.3

• Classroom: We assume a low-frequency RT60 of approxi-
mately 0.8 s and a lower SNR. The RIR length is set to 0.6 s
to capture the decay before it is overwhelmed by noise. A sam-
ple rate of fs = 250 Hz is chosen to reflect the narrower low-
frequency bandwidth. The decay rate is set to δ = 8.63, and the
amplitude gain is fixed at −10 dB.

Fig. 4 shows the empirical pdf of the estimated amplitudes.
The LINEX and EDC methods yield narrow distributions, though
EDC shows a small bias likely due to approximation in (39). NLS-
based methods exhibit heavier tails. Table 1 summarizes perfor-
mance.

The results indicate that, all estimators are approximately un-
biased when sufficient data are available. However, LINEX and
EDC-based methods are more efficient with a lower estimation
variance. Note that in single-slope setting, both the log-squared
RIR and the log-EDC regression models reduce to linear least
squares formulations, making them computationally trivial.

Next, we consider a more complex scenario with three com-
ponents in (42): two decaying slopes (δ1, δ2) and one noise term
(δ0 = 0). Similarly to a single slope setting, we choose a sample
rate fs of 2 kHz to limit data richness, but a longer RIR length of
3 s to include the tail of noise floor.

3All amplitudes are transformed via logarithm and reported in dB for
visual and interpretive clarity, specifically, 10 log10(A

2).
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Figure 4: Estimated amplitude distributions in single-slope cases,
where (a) is data-richer than (b).

Let the two slopes have RT60s of 1 and 2 s, and the noise
amplitude −40 dB. We consider two amplitude schemes: A1 =
−15 dB and A2 = −25 dB where the lower-energy slope get
masked between higher-energy slope and the noise; and A1 =
A2 = −20 dB where the faster decaying slope gets masked since
they start with same energy level.

Fig. 5 shows the empirical pdf of the four estimators of the
three amplitude parameters A1, A2, and A0 in dB in the two pa-
rameter settings described above. The results are consistent with
our findings for the single-slope scenario, with LINEX and EDC
methods being more efficient. Importantly, for less prominent
slopes likeA2 in (a) andA1 in (b), all estimators are skewed to the
right with a larger variance compared to the others. This is due to
the dominance of different decays that take up parts of the model
function; thus, it is intrinsically harder to estimate the amplitude of
the decays that are masked. An example of a fitted model is shown
in Fig. 6.

4.2. Simulation Based on a Synthetic Three-Room RIRs

A high-quality RIR dataset is synthesized in a coupled three-room
scene using the Treble4 suite by [10]. We preprocess the RIRs
with DecayFitNet and perform a K-means clustering to identify the
band-specific RT60s [21], and then perform a LINEX regression
for each RIR to estimate the decay amplitudes of the slopes.

Fig. 7 shows the map of estimated amplitudes for each slope in
the frequency band 500 Hz and 1000 Hz. The results show a clear
separation of slope characteristics in each room, with the middle
room being the most reverberant and the left room the most ab-
sorbent. Energy leakage across rooms is also visible, showing a
smooth interpolation between the estimates. The results are also
comparable to those of [10] numerically. This shows the applica-
tion potential of the LINEX regression model.

4https://www.treble.tech/
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Figure 5: Distribution of estimates of decay amplitudes in multi-
slope cases. (a) highlights a slope weak in amplitude, and (b)
highlights a slope masked because of fast decay rate.

5. CONCLUSION

This paper presents a comprehensive study on amplitude estima-
tion methods within the common-slope model of late reverbera-
tion. We refined and analyzed several classic estimation meth-
ods, including nonlinear least squares on linear, logarithmic, and
power-law scales, regression based on energy decay curves (EDC),
and proposed a novel LINEX regression derived from a Maximum
Likelihood framework. Our theoretical formulation makes use of
the statistical structure of RIRs, enabling more accurate modeling
of decay amplitudes and better inferences.

Simulation results confirm that the LINEX and EDC-based
approaches consistently outperform others in terms of efficiency,
particularly in low-SNR or complex multi-slope settings. We also
demonstrated the practical applicability of our approach to cap-
ture spatially varying decay structures. However, we acknowledge
that our work is done on synthetic datasets only, and validation
work using real-world recordings of complex acoustic scenes can
be beneficial.

Future work may extend the use of the LINEX loss function
in joint estimation of decay rates and amplitudes, which would
further complete the analysis-to-synthesis pipeline on late reverb
generation.
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