
Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

DISTRIBUTED SINGLE-REED MODELING BASED ON ENERGY QUADRATIZATION AND
APPROXIMATE MODAL EXPANSION

Champ C. Darabundit ∗

CIRMMT
McGill University
Montréal, Canada

champ.darabundit@mail.mcgill.ca

Vasileios Chatziioannou

University of Music and Performing Arts
Vienna

Vienna, Austria
chatziioannou@mdw.ac.at

Gary Scavone

CIRMMT
McGill University
Montréal, Canada

gary.scavone@mcgill.ca

ABSTRACT

Recently, energy quadratization and modal expansion have be-
come popular methods for developing efficient physics-based
sound synthesis algorithms. These methods have been primarily
used to derive explicit schemes modeling the collision between
a string and a fixed barrier. In this paper, these techniques are
applied to a similar problem: modeling a distributed mouthpiece
lay-reed-lip interaction in a woodwind instrument. The proposed
model aims to provide a more accurate representation of how a mu-
sician’s embouchure affects the reed’s dynamics. The mouthpiece
and lip are modeled as distributed static and dynamic viscoelastic
barriers, respectively. The reed is modeled using an approximate
modal expansion derived via the Rayleigh-Ritz method. The reed
system is then acoustically coupled to a measured input impedance
response of a saxophone. Numerical experiments are presented.

1. INTRODUCTION

A fundamental phenomenon in the excitation of single-reed instru-
ments — such as the clarinet and saxophone — involves the reed
interacting with, or beating against, the lay of the mouthpiece [1].
Reed beating not only restricts the flow of air into the instrument
but also introduces nonlinear collision effects to the flow. His-
torically, the single reed has been modeled in a lumped manner
with a mass-spring-damper system representing the displacement
of the reed tip [2, 3]. More recently, collision effects have been in-
cluded in the lumped model using the nonlinear viscoelastic Hunt-
Crossley (HC) contact model [4].

An issue with the lumped approach is the entanglement of
player and material parameters. The lumped parameters must en-
capsulate the effects of the player’s embouchure and the material
properties of the reed. Likewise, the lumped collision must com-
pensate for the complex distributed interaction between the reed
and the curved mouthpiece lay. This has motivated more inten-
sive treatments that model the reed as a cantilever Euler-Bernoulli
beam [5]. However, collision with the lay and interaction with the
player’s lip have only been approached in an ad-hoc manner.

This article proposes a refinement to the distributed single-
reed model by modeling contact with the lay and the player’s lip
using distributed HC-type forces. While the lip is not colliding
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Figure 1: Lay-reed-lip system omitting the upper lip and teeth.
The reed is clamped below the ligature (hatched). The lay (A)
and lip (B) domains are marked blue and red, respectively. The
acoustic domain (P , green) is applied to the reed surface in the
region above the lip (shaded gray).

with the reed, per se, the biomechanical behavior of tissue exhibits
nonlinear dissipation and spring hardening [6, Ch. 7], motivating
the application of the HC model here. The intent behind modeling
the lip as a separate and dynamic object is to have playing param-
eters that directly represent a wind musician’s embouchure.

The proposed model is efficiently simulated using recent algo-
rithmic advances in collision modeling based on the scalar auxil-
iary variable (SAV) approach [7, 8, 9]. Prior results on distributed
collisions are extended by transforming elastic interactions into
viscoelastic interactions. Additionally, a novel approach is taken
to modeling the lip as a moving distributed barrier. The energy-
based Rayleigh-Ritz method [10] is used to derive an approximate
modal expansion of the reed based on its spatially varying cross-
sectional area. The Rayleigh-Ritz method has been used in musical
acoustics to derive the modal parameters of plates [11]. Because
the reed operates at playing frequencies below its own resonant
frequency, only a few modes are necessary to capture the reed dy-
namics. The excitation mechanism is coupled to a lumped modal
instrument impedance response derived from measurement of an
alto saxophone.

Sec. 2 introduces the governing equations of the lay-reed-lip
system, the acoustic flow, and the modal bore. In Sec. 3, the reed’s
modes are derived using the Rayleigh-Ritz method and demon-
strated to converge with a high resolution finite difference scheme.
Sec. 4 discretizes the system using finite-difference time-domain
(FDTD) methods and outlines the update of the numerical scheme.
Sec. 5 describes the optimization procedure used to obtain a modal
instrument response from saxophone impedance measurements.
Sec. 6 presents the results of numerical simulation experiments.
Sec. 7 provides concluding remarks and ideas for future work.
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2. GOVERNING EQUATIONS

In this article, dnz and ∂n
z are used to denote the nth total and partial

derivatives with respect to a general variable z. Let ȳ(x, t) repre-
sent the transverse displacement of the reed, of length L, defined
on the domain L = [0, L]. The lay-reed-lip system, displayed in
Fig. 1, is governed by the following equation:

ρrS(x)
(
∂2
t ȳ + γ∂tȳ

)
+ ∂2

x

(
EI(x)(1 + η∂t)∂

2
xȳ

)
= F , (1)

where ρr is the material density of the reed, E is Young’s modulus
of elasticity, γ is a damping constant related to the viscosity of air,
and η is another damping constant related to internal damping in
the reed. S(x) and I(x) are the spatially varying cross-sectional
area and area moment of inertia, respectively. The reed is modeled
as a rectangular cantilever Euler-Bernoulli beam and is parameter-
ized by a thickness function b(x) such that

S(x) = wb(x), I(x) =
S(x)b2(x)

12
, (2)

where w is the width of the reed. Following [5], the thickness is
defined relative to the top of the reed. The reed is subject to the
following clamped-free boundary conditions:

ȳ(0, t) = ∂xȳ(0, t) = 0, ∂2
xȳ(L, t) = ∂xEI(L)∂

2
xȳ(L, t) = 0.

(3)
The term F = F(x, t) is the force per unit length applied to the
reed which can be decomposed into contributions from the lay, lip,
and instrument

F = Fb −Fa + Fp. (4)
Fa and Fb are the contact densities due to the barriers above (lay)
and below (lip) the reed, respectively. Fp is the acoustic force
density resulting from the pressure difference upstream and down-
stream of the reed. Each force density is defined over its own do-
main (A, B, P) inside L, and these domains can and do overlap.

2.1. Lay and lip models

The contact densities Fa and Fb are modeled as distributed non-
linear viscoelastic contact forces based on the Hunt-Crossley (HC)
model [12]. This approach has been used to model lumped reed
collisions in [13]. A general distributed contact density, Fc, over
a domain C = [xc,1, xc,2] is defined as

Fc = (1 + c(x)∂th) ∂hVc(h), (5)

and is dependent on the compression h = h(x, t). c(x) is the
non-negative possibly distributed contact damping and

Vc(h) =
k(x)

α(x) + 1
[h]α(x)+1

+ , [·]+ = max (·, 0) , (6)

defines the contact potential density. k(x) is the non-negative pos-
sibly distributed contact stiffness and α(x) is a geometric expo-
nent. The contact damping is defined to be constant during con-
tact, but dependent on the impact velocity such that a consistent
coefficient of restitution, cr , is achieved [14, 15]. For the force
densities in (4), the respective compressions are defined as

ha(x) = ȳ − ȳa(x), (7a)
hb(x, t) = ȳb(x, t)− (ȳ − b(x)) , (7b)

for the barriers above and below the reed located at ȳa(x) and
ȳb(x), respectively. The total contact potential is

Vc =

∫
C
Vc(h)dx. (8)

2.2. Scalar auxiliary variable method

The scalar auxiliary variable (SAV) method [16] is an energy
quadratization method which has seen widespread use in devel-
oping explicit or linearly implicit schemes for nonlinear systems
[17]. Through a change of variables, energy quadratization meth-
ods encode a nonlinear system into a time-varying linear system.
The total contact potential energies, Va and Vb, for the lay and lip
respectively now define a scalar auxiliary variable

ψ =
√

2 (Va + Vb) + ϵ, (9)

where ϵ is a small gauge. The contact force densities are rewritten
as

Fa = ψga + ra(x, t)∂tha, Fb = ψgb + rb(x, t)∂thb, (10)

where ga and gb are the variational derivatives of ψ with respect to
the compressions ha and hb. ga and gb are defined generally based
on the variation derivative of ψ with respect to the compressions
as

ga,b =
δψ

δha,b
=

ka,b(x)√
2 (Va + Vb) + ϵ

[ha,b]
αa,b

+ . (11)

ra and rb are time-varying nonlinear damping coefficients equal to

ra,b = ca,b(x) ∂ha,bVc(ha,b), (12)

which are guaranteed non-negative by the non-negativity of
∂ha,bVc(ha,b) and ca,b. Unlike in the lumped case [15, 18], the
damping coefficients are not expressed in terms of the gradient
and auxiliary variables. The time-derivative of the auxiliary vari-
able follows

dtψ =

∫
A
ga∂thadx+

∫
B
gb∂thbdx. (13)

2.3. Acoustic forces and flow

The acoustic force density is defined over the domain P

Fp = w p∆(t), p∆ = pm(t)− pz(t), (14)

where pm is the upstream pressure in the player’s mouth and pz is
the downstream pressure in the instrument. Owing to the lumped
model of the bore impedance, the total flow entering the bore, uz ,
is modeled in an ad hoc manner based on a simple and quasi-
stationary Bernoulli flow [1]

uz = uf +

∫
P
Urdx, Ur = w∂tȳ, (15)

with
uf = sign (p∆)Sj

√
2 |p∆|/ρa, (16)

and Sj the jet aperture area and ρa the density of air. Sj will be de-
fined later on in Sec. 4.4. Ur is a volume flow density representing
the reed pumping flow.

2.4. Modal instrument impedance

The instrument bore is modeled via a modal system representing
the modal expansion of the instrument’s input acoustic impedance.
This approach is common in modal synthesis and was also used
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to model wind instruments based on impedance measurements in
[19]. The result is a set of M ordinary differential equations,

uz1M = Mzdtp+ 2Rzp+Kzq, (17a)

dtq = p, pz = 1T
Mp. (17b)

q and p both ∈ RM×1 are the acoustic momentum per unit area
and pressure of each mode, respectively. 1M is an M column
vector of ones. The diagonal parameter matrices Mz , Rz , and Kz

are the modal mass, damping, and stiffness matrices with diagonal
elements defined by

Mmm = mm, Rmm = mmζmωm, Kmm = mmω
2
m, (18)

with mm the acoustic mass, ζm the damping ratio, and ωm the
resonant frequency in rads/s of each mode.

2.5. Energy balance

The system in (1) obeys the following energy balance

dt (Hr + Vc +Hz)︸ ︷︷ ︸
H

= Pb + Pm︸ ︷︷ ︸
P

− (Qr +Qc +Qf +Qz)︸ ︷︷ ︸
Q

,

(19)
where H is the total stored energy of the system, Q is the total
power loss, and P is the total supplied power. Each total energetic
element has been broken down into its constituent subsystems with
the contact related quantities defined as Vc = Va + Vb and Qc =
Qa + Qb. The energy balance is derived by taking the product
of ∂tȳ and (1), integrating over the entire domain, and using the
definitions in (5)-(17b)

Hr =
1

2

∫
L
ρrS (∂ty)

2 dx+ EI
(
∂2
xy

)2
dx, (20a)

Vc =

∫
A
Va(ha)dx+

∫
B
Vb(hb)dx =

1

2
ψ2, (20b)

Hz =
1

2

∥∥∥√Mzp
∥∥∥2

+
1

2

∥∥∥√Kzq
∥∥∥2

, (20c)

Qr =

∫
L
γρrS (∂ty)

2 + ηEI
(
∂t∂

2
xy

)2
dx, (20d)

Qc =

∫
A
ra(x, t) (∂tha)

2 dx+

∫
B
rb(x, t) (∂thb)

2 dx, (20e)

Qf = p∆uf = Sj

√
2

ρa
|p∆|3/2 , Qz =

∥∥∥√2Rzdtq
∥∥∥2

, (20f)

Pb =

∫
B
∂tybFbdx, Pm = pmuz, (20g)

where vector norm and inner product are defined as

⟨u,v⟩ = uTv, ∥u∥ =
√

⟨u,u⟩. (21)

If all the system parameters are non-negative then H and Q are
≥ 0 and the proposed system in (1) is passive.

3. APPROXIMATE MODAL EXPANSION

Modal expansion methods involve expressing a system as a super-
position of N modal displacements,

ȳ(x, t) =

N∑
n=1

vn(x)yn(t), (22)

where vn is the corresponding spatial eigenfunction. Said meth-
ods typically rely on an analytical solution for the spatial eigen-
functions [20, 21]. However, no analytical solution exists for the
cantilever beam and further complexity results from systems with
distributed parameters — i.e. varying thickness — as is the case
here.

The Rayleigh-Ritz method is an energy-based method which
can be used to approximately solve a differential eigenvalue prob-
lem [10]. Instead of analytical eigenfunctions, approximate Ritz
eigenfunctions are formed by a superposition of trial functions ϕn

and undetermined coefficients an,

v(Nr)
n =

Nr∑
n=1

anϕn(x). (23)

Nr denotes the number of trial functions used in the approxima-
tion. The set of trial functions must be admissible functions and
satisfy the boundary conditions of the system. A good choice of
trial functions are the spatial eigenfunctions of a related system or
ones designed to observe the boundary condition [22]. The coeffi-
cients, an, are found by solving the algebraic eigenvalue problem

Ka =
(
ω(Nr)
n

)2

Ma, (24)

where ω(Nr)
n is the nth Ritz eigenfrequency. K and M are the

so-called symmetric stiffness and mass matrices with elements

kij =

∫ L

0

EI(x)
(
∂2
xϕi(x)

) (
∂2
xϕj(x)

)
dx, (25a)

mij =

∫ L

0

ρrA(x)ϕi(x)ϕj(x)dx, (25b)

which arise from minimizing the ratio of the reference poten-
tial energy and maximum kinetic energy in (20a). These ele-
ments are derived, in this paper, through a numerical integra-
tion. Interested readers are referred to [10, Ch. 9] for further de-
tails. Utilizing an approximate modal expansion in vector form
ȳ(x, t) = V(Nr)y(t), taking the product with the transpose of
V(Nr), and integrating over the domain produces the modal form
of (1)

d2ty +
(
γI+ ηΩ2)︸ ︷︷ ︸

2R

dty +Ω2y = F, (26)

based on the definitions in (25) and the orthogonality of the norm
normalized trial functions. Ω is a diagonal matrix containing the
approximate Ritz eigenfrequencies, ω(Nr)

n , and F is a column vec-
tor containing the modal forces with elements

Fn(t) =

∫
L
v(Nr)
n F(x, t)dx. (27)

In practice, the number of modes used in the Rayleigh-Ritz
method is greather than the number of modes used in the approx-
imate modal expansion (N ≤ Nr). The accuracy of the method
increases with the number of trial functions, but the higher mode
estimates are less accurate and likely outside the range of interest
for audio applications. For the system in (1), trial functions were
chosen from the set of constant parameter cantilever eigenfunc-
tions [10, Ex. 8.4, Eq. (o)], with mode amplitudesAr chosen such
that the L2 norm of each trial function is unity. Special care was
taken such that the boundary conditions are met numerically.
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Figure 2: Convergence of the first three reed modes obtained via
the Rayleigh-Ritz method (solid) and the FD θ-scheme (dashed) to
the same FD scheme with 2048 spatial grid points.

Based on the modal expansion, the stored energy and dissi-
pated power in the reed is rewritten as

Hr =
1

2
∥dty∥2 + 1

2
∥Ωy∥2 , Qr =

∥∥∥√2Rdty
∥∥∥2

(28)

Fig. 2 compares the convergence of the first three modes for
the saxophone reed geometry and parameters given in [5] obtained
via the Rayleigh-Ritz method and the finite difference (FD) θ-
scheme used in the same article. The ground truth was consid-
ered to be the θ-scheme with 2048 grid points and sampling rate
96 × 10 kHz. The Rayleigh-Ritz method with Nr ≥ 16 demon-
strates nearly equivalent accuracy to the θ-scheme with 512 grid
points and the same sampling rate. The third mode deviates by
approximately five cents from the ground truth. This is likely due
to errors in the numerical integration used to compute the modes.

4. DISCRETE SYSTEM

The system described thus far is discretized using finite difference
time domain (FDTD) methods. First, discrete operators are intro-
duced. Then, each element of the system is discretized. Finally, a
method for updating the entire system is presented.

4.1. Discretization operators

Let znl represent the discrete sampling of a function z(∆tn,∆xl)
where ∆t and ∆x are the temporal and spatial grid spacing, re-
spectively. Defining the half temporal shift operator et±znl =

z
n± 1

2
l , first-order partial and total time derivatives can be approxi-

mated by the following operators

δt =
e+ − e−

∆t
, δt· =

e2+ − e2−
2∆t

. (29)

Unity is approximated by the following operators

µt =
e+ + e−

2
, µt· =

e2+ + e2−
2

, (30)

and higher order temporal derivatives and approximations of unity
can be produced by combining the operators above. Approxima-
tions used in this article are

δtt =
e2+ − 2 + e2−

∆2
t

≈ ∂2
t , µtt =

e2+ + 2 + e2−
4

≈ 1. (31)

Although spatial derivatives have been eliminated by the modal
expansion approach, spatial integrals need to be approximated via
Riemann sums

∆x

N∑
l=1

ul ≈
∫
L
udx. (32)

Significantly, variables and forces defined on different domains are
related to the modal displacements via projection matrices. Con-
sider, generally, a set ofNd observation points xd with spatial sam-
pling ∆d

x. The projection matrix mapping the observation points
to the modal displacement is defined based on the spatial eigen-
functions as

Pd =
[
v
(Nr)
1 (xd), . . . , v

(Nr)
N (xd)

]T
∈ RN×Nd . (33)

Defining the discrete displacements ŷd and force densities f̂d, the
discrete form of the modal expansion (22) and modal force (27)
are

ŷd = PT
d yd, Fd = ∆d

xPd f̂d, (34)

and d can be replaced with a, b, or p.

4.2. Modal reed discretization

The modal expansion of the reed (26) is discretized as

δtty
n + 2Rδt·y

n +Ω2µtty
n = Fn, (35)

where y and F ∈ RN×1 are the discrete modal displacement and
force vectors. The modal forces are defined as

Fn = ∆b
xf

n
b −∆a

xf
n
a +∆p

xf
n
p . (36)

fnb , fna , and fnp are the projected force densities from the lay, lip,
and instrument acoustics.

The modal parameters in (26) are pre-warped to account for
numerical dispersion in the scheme following [20]. Solving (35)
for yn+1 results in the update scheme

yn+1 = Ayn +Byn−1 +Cf , (37)

where A, B, and C are diagonal matrices ∈ RN×N .

4.3. Lay and lip discretization

The lay and lip are defined on two subspaces based on the com-
pression vectors above the reed, h́n

a ∈ RNa×1, and below the
reed, h̆n

b ∈ RNb×1. The acute [́·] and breve [̆·] markers are used to
demarcate elements defined in their respective subspaces. The dis-
crete time-derivates of the compressions are related to the modal
displacements by

δt·h́
n
a = PT

a δt·y
n, δth̆

n
b = δty̆

n
b −PT

b δt·y
n. (38)

The lip barrier utilizes the interleaved centered difference, δt, to
allow for player inputs before the n + 1 timestep. Using the rela-
tionship in (38), the projected modal contact force densities con-
taining the discrete form of (10) are written in terms of the modal
displacements as

fna = Paǵ
n
a︸ ︷︷ ︸

gn
a

µtψ
n +PaŔ

n
aP

T
a︸ ︷︷ ︸

Rn
a

δty
n, (39)

fnb = Pbğ
n
b︸ ︷︷ ︸

gn
b

µtψ
n −PbR̆

n
bP

T
b︸ ︷︷ ︸

Rn
b

δty
n +PbR̆

n
b δty̆

n
b︸ ︷︷ ︸

rn
b

, (40)
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where ǵa and ğb are the discrete form of the gradient functions, the
value of which requires careful consideration and will be discussed
later on in Sec. 4.8. Ŕn

a and R̆n
b are time-varying diagonal damp-

ing matrices ∈ RNa×Na and RNb×Nb , respectively, with elements
corresponding to the discrete-time version of (12). Based on the
projection matrices and the relationships in (38), the discrete form
of (13) is

δtψ
n = − (gn

⋆ )
T δt·y

n +∆x (ğ
n
b )

T δty̆
n
b , (41)

with gn
⋆ = ∆b

xg
n
b − ∆a

xg
n
a . The capped definitions for contact

stiffnesses and damping from [15] are utilized to limit numerical
errors for high stiffness and restitution coefficients.

4.4. Acoustic forces and flow discretization

The acoustic interaction between the reed and acoustic flow is de-
fined on another subspace ŷ ∈ RNp×1 with corresponding projec-
tion matrix Pp. The acoustic force is only applied to the reed at
positions above the lip. The force density vector is

fnp = Pp f̂
n
p = wpn∆ Pp1̂p︸ ︷︷ ︸

1p

, pn∆ = pnm − pnz , (42)

with 1̂p an Np column vector of ones. The discrete volume veloc-
ity flow into the instrument is

un
z = sign(pn∆)Sn

j

√
2 |pn∆|/ρa + w∆p

x1
T
p δt·y

n, (43)

and the jet apeture area was arbitrary chosen based on combination
of the side and tip openings

Sn
j = 0.6Sn

tip + 0.2 (2Sn
side) ,

= 0.6w
[
−h́n

a,L

]
+
+ 0.2

2

L∑
l≥llip

∆a
x

[
−h́n

a,l

]
+

 ,
(44)

with scaling constants representing a vena contracta factor.

4.5. Modal impedance discretization

The following scheme is used to discretize the modal instrument
impedance,

un
z1M = Mzδtp

n + 2Rzµtp
n +Kzµtq

n, (45a)

δtq
n = µtp

n, pnz = 1T
Mµtp

n. (45b)

The frequency response of the scheme is the same as the scheme
used to discretize the reed and can be pre-warped in an identical
manner.

4.6. Discrete energy analysis

The discrete energy follows from the inner product with δt·yn with
(35) and the relationships in Sec. 4.2-4.5. The discrete power-
balance is

δth
n = pn − qn, (46)

with h, p and q the discrete total stored energy, supplied power,
and dissipated power containing discrete correlates to the quanti-
ties in (20) and (28). The scheme is unconditionally stable if all
parameters are non-negative.

4.7. Scheme update

The discrete scheme detailed thus far is linearly implicit and re-
quires a matrix inverse at each time step due to the time-varying
damping matrices in (39) and (40). This is unlike the case of sim-
ple elastic collisions where an explicit algorithm is achievable [17].
Owing to the approximate modal expansion and the reed system at
hand, only a 3 × 3 matrix inverse is required. It will be helpful,
as in [8] to define an intermediate variable sn = yn+1 − yn−1.
Thus, (37) is rewritten as

sn = sn⋆ +Cfn, (47)

with sn⋆ = Ayn+(B− I)yn−1 representing the solution to sn in
the absence of external forces. I is an appropriately sized identity
matrix. Rewriting (39) and (40) in terms of sn and using (41), the
following linear system in sn is derived:[

D+
1

4
gn
⋆ (gn

⋆ )
T

]
︸ ︷︷ ︸

E

sn = C−1sn⋆ + cn⋆ +∆p
xf

n
p , (48)

with,

D = C−1 +
1

2∆

(
∆a

xRa +∆b
xRb

)
, (49a)

c⋆ = gn
⋆ψ

n− 1
2 +∆b

x

(
∆t

2
gn
⋆ (ğn

b )
T δty̆

n
b + rnb

)
, (49b)

The inverse of E can be updated with the Sherman-Morrison for-
mula as in [17],

E−1 = D−1 −
1
4
D−1gn

⋆ (gn
⋆ )D

−1

1 + 1
4
(gn

⋆ )
T D−1gn

⋆

. (50)

It is only necessary to compute the dense inverse D−1 at each time
step.

The nonlinear coupling between the reed and the bore requires
reformulating (45a) in terms of the discrete pressure difference,
then substituting in sn from (48) into (43) and solving the follow-
ing quadratic in

√
|pn∆|

−c2pn∆ − cn1 sign (pn∆)
√

|pn∆|+ cn0 = 0, (51)

with coefficients

c2 = 1 + b2a2, cn1 = b2S
n
j

√
2/ρa, (52a)

cn0 = pnm − b2a
n
0 + bn0 . (52b)

The coefficients a2 and an0 arise from the reed scheme,

a2 =
(w∆p

x)
2

2∆t
1T
p E

−1C1p, (53a)

an0 =
w∆p

x

2∆t
1T
p E

−1 (C−1sn⋆ + c⋆
)
, (53b)

and the b2 and bn0 coefficient surface from the modal impedance
scheme,

b2 = 1T
MB−1

z 1T
M , Bz =

2

∆t
Mz + 2Rz +

∆t

2
Kz, (54a)

bn0 = 1T
MB−1

z

(
Kzq

n− 1
2 − 2

∆t
Mzp

n− 1
2

)
. (54b)

DAFx.5



Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

As c2, cn1 ≥ 0, a positive solution is guaranteed by [13]

sign (pn∆) = sign(c0), (55a)√
|pn∆| = −c1 +

√
c21 + c2 |c0|
2c2

. (55b)

The scheme is updated by first determining pn∆ via (55), and then
deriving sn (and by definition yn+1) by solving (48). Follow-
ing this, the auxiliary variable ψn and modal instrument variables,
pn+ 1

2 and qn+ 1
2 , can be updated via (41), (45a), and the first

equation in (45b).

4.8. Potential gradient values

When modelling collisions using the SAV approach it is necessary
to constrain the auxiliary variable to be non-negative such that the
contact force points outwards from the barrier and the auxiliary
variable does not experience any long term drift [8]. In the model
presented here, there are two gradient vectors and one auxiliary
variable. A proposed solution is to only constrain one gradient
vector and let the other remain at its nominal value. As the lip is
assumed to be in nearly constant contact with the reed, the con-
straint is applied to the lay gradient variable which experiences
more collisions.

The nominal discrete gradient vectors are

gn
a = ga(h

n
a), gn

b = gb (µth
n
b ) , (56)

with ga and gb the continuous gradient functions (11) on each re-
spective barrier grid. As in [9], consider the system in the absence
of external forces due to acoustics. Then, substituting in the so-
lution to sn into (41) and expanding the definition of E−1 using
(50), the necessary constraint is

1

4
(gn

⋆ )
T D−1gn

⋆ψ
n− 1

2︸ ︷︷ ︸
σn
2

+
1

2
gT
⋆ D

−1
(
C−1sn⋆ +∆b

xR̆
n
b δty̆

n
b

)
︸ ︷︷ ︸

σn
1

−
(
ψn− 1

2 +∆t∆
b
x (ğ

n
b )

T δty̆
n
b

)
︸ ︷︷ ︸

σn
0

≤ 0.

(57)
Following the procedure in [8], let gn

⋆ ≜ γĝn
⋆ where ĝn

⋆ is the
nominal value of the combined gradient vector and γ is a scalar ∈
[0, 1]. The constraint in (57) becomes a scalar quadratic inequality
in γ. The branched definition of gn

⋆ is then

gn
⋆ =


min (γ+, 1) ĝn

⋆ , V n
c > 0

γ0 ĝn−1
⋆ , V n

c = 0 & V n−1
c > 0

0, V n
c = V n−1

c = 0

, (58)

where γ+ represents the positive solution to the inequality (57)

γ+ = 2
−σn

1 +
√

(σn
1 )

2 + σn
2 σ

n
0

σn
2

. (59)

The branching conditions are determined by the total discrete con-
tact energy at each time step. γ0 has an equivalent definition to
γ+ except all the gradient values in the coefficients are evaluated
at the previous time step. The second branch in (58) ensures that
the auxiliary variable is equal to zero immediately after contact
[8]. Finally, gn

a is recovered based on gn
⋆ and the nominal value of

gn
b . The gradients values are first determined from (58), then the

scheme is updated as before.
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Figure 3: Normalized impedance response of a measured alto sax-
ophone with a written G4 combined with a mouthpiece geome-
try (blue), optimization fit (red), and discretized response (green,
dashed).

5. INSTRUMENT RESPONSE OPTIMIZATION AND
MEASUREMENT

An alto saxophone without a mouthpiece was measured using a
multi-microphone impedance head [23]. A CT scan of an inter-
nal mouthpiece geometry was then used to prepend a theoretical
mouthpiece response to the measurement using the frequency do-
main transfer matrix method (TMM) [24]. The combined response
was preprocessed to be minimum phase and the response above 12
kHz was set to the theoretical characteristic impedance Zc. The
response above this limit becomes progressively noisier due to the
measurement range of the impedance head.

The modal parameters were estimated through a frequency
banded optimization procedure akin to [25]. Instead of utilizing
two separate constrained optimizations to derive the coefficients
for digital filters, an unbounded Newton trust region algorithm
[26] was used to fit the parameters of a continuous time model.
The parameterized impedance response is

Ẑ(θ(p);ω) =

K(p)∑
k=1

eakjω

−ω2 − 2jebkeckω + e2ck
, (60)

where θ(p) contains the set of parameters ak, bk, and ck for
k = 1, . . . ,K(p) in each optimization frequency band p. The
optimization parameters are related to the modal parameters by
eak = 1

mk
, ebk = ζk, and eck = ωk.

The parameters are optimized by minimizing the squared mag-
nitude error between the measured impedance response, Z, within
each set of P frequency bands ω(lp) ≤ ω ≤ ω(rp) using the ob-
jective function

min
θ

1

2

ω(rp)∑
ω=ω(lp)

∣∣∣Z(ω)− Ẑ(θ;ω)
∣∣∣2 . (61)

The log-trick parameter mapping employed here ensures all sys-
tem parameters are non-negative and the optimization is un-
bounded. Fig. 3 compares the preprocessed alto saxophone input
impedance to the frequency response of optimized modal input
impedance simulated with (45a) using pre-warped parameters.

6. NUMERICAL EXPERIMENTS

Numerical experiments were conducted to evaluate the efficacy
and behavior of the proposed model and algorithm. The Rayleigh-
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Figure 4: Comparison of approximate modal expansion (RR-ME)
(blue, dashed) and the FD scheme (red, dashed) to a reference sim-
ulation with 10x oversampling at 960 kHz (black).

Ritz method was carried out using Nr = 24, based on the conver-
gence demonstrated in Fig. 2. The mouthpiece lay and reed pro-
files were taken from [5], along with the reed material parameters.
The lay parameters and lip parameters were assumed constant in
each barrier. Material parameters and the lip position for the first
experiment are given in Table 1 with a constant α = 1.1 for both
barriers. Sound examples can be downloaded online1.

6.1. Embouchure warmup routine

All simulations began with an “embouchure warmup” routine,
whereby the lip was moved from a non-contact state to its initial
position over a duration of 1/16 seconds. During the warmup rou-
tine, the reed is uncoupled from the acoustics of the instrument to
prevent any instrument resonances from being excited. This was
done to reduce the length of the warmup time. Were the instrument
coupled, the warmup time would need to allow for any instrument
resonances to subside.

6.2. Approximate modal expansion comparison

The approximate modal expansion scheme (RR-ME) and the FD
θ-scheme (FD) with 512 grid points were compared to a reference
FD θ-scheme with 10x oversampling in Fig. 4. The mouth pres-
sure, pm, was set to a constant 2.5 kPa and actuated following the
warmup routine. Both schemes closely follow the behavior of the
reference scheme and display a slight drift in the response after
repeated collisions. There is a noticeable difference when compar-
ing the less elastic lip collision in the reference to the RR-ME and

1https://caml.music.mcgill.ca/doku.php?id=projects:wspp

Parameter Value Parameter Value
klay 1× 108 N/mα klip 6.5× 105 N/mα

cr,lay 0.8 cr,lip 1× 10−3

center xlip 15 mm ylip -0.4 mm

Table 1: Synthesis parameters used in numerical simulations
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Figure 5: Comparison between the proposed model and the model
in [5] under similar experimental condition in said paper.

FD schemes. The behavior of the RR-ME scheme is comparable
to the FD scheme at a much lower computational cost.

6.3. Comparison with Avanzini and van Walstijn model

A separate study was conducted to compare the proposed model
to the model in [5] in a dynamic simulation without any coupled
acoustics. An external 200 Hz sinusoidal driving force with an
amplitude range from 0-90 N was applied across the entire reed
surface. In an attempt to match the simulations, the following pa-
rameters were modified: klay = 3× 107 N/mα, ylip = 0.5 mm. A
much lower lay stiffness was necessary because the ad hoc colli-
sions in [5] result in a much weaker interaction between the reed
and lay. Fig. 5 demonstrates that the proposed model can be mod-
ified to produce similar responses to the model in [5].

6.4. Lip parameter experiments

Fig. 6 displays two preliminary experiments where, in the top plot,
the lip position is linearly increased over 0.5 s by 6 mm and 1 mm
in the x and y directions, respectively. In the bottom plot, the lip
stiffness is linearly increased over 0.5 s to 1 × 107 N/mα. The
result in both is a pitch shift up most clearly evident in the energy
of the higher partials. However, the timbre of the two variations
are markedly different.

7. CONCLUSION

A model for the single-reed has been presented that decouples the
material parameters of the reed from the player. An efficient nu-
merical scheme was developed by representing the reed using an
approximate modal expansion and modeling collisions using the
SAV approach. The approximate modal expansion approach was
demonstrated to have accuracy on par with the linearly implicit θ-
scheme utilizing 512 grid points. The proposed scheme is linearly
implicit and requires a linear system inverse at each time step. The
proposed reed model is coupled to an optimized modal response
fitted to the input impedance of an alto saxophone.

Viscoelastic collision with two distributed barriers were mod-
eled by using one auxiliary variable, two gradient vectors, and
fixing the nonlinear damping parameters to their nominal values.
Non-negativity of the auxiliary variable is ensured by scaling one
of the gradient vectors. Further investigation is needed into ro-
bustness of this approach. A particular concern is the assumption
that the acoustic force can be ignored in the auxiliary variable con-
straint. Although no anomalous behavior has been observed so far,
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Figure 6: Synthesis experiments with different lip parameters.
Top: increasing xlip and ylip by 6 mm and 1 mm. Bottom: in-
creasing the lip stiffness to 1× 107 N/mα

a stronger constraint would consider the contribution of the acous-
tic force.

A benefit of separating player parameters and reed parame-
ters is that control of the synthesis algorithm is more physically
informed. The tuning and register of each note can be adjusted
through the same movements an actual player would make, such
as adjusting their lip position or tightening their embouchure. An-
other benefit is that the material parameters of the reed and mouth-
piece can be directly inferred from physical measurements. The
model also allows for great flexibility and better control of play-
ing parameters. Though not explored here, it is possible to spa-
tially vary the stiffness and damping along each barrier. There
remains, for future work, the classical issue of determining a pa-
rameter space suitable for sound synthesis.
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