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ABSTRACT

Piano sound emulation has been an active topic of research and de-
velopment for several decades. Although comprehensive physics-
based piano models have been proposed, sample-based piano em-
ulation is still widely utilized for its computational efficiency and
relative accuracy despite presenting significant memory storage
requirements. This paper proposes a novel hybrid approach to
sample-based piano synthesis aimed at improving the fidelity of
sound emulation while reducing memory requirements for stor-
ing samples. A neural network-based model processes the sound
recorded from a single example of piano key at a given velocity.
The network is trained to learn the nonlinear relationship between
the various velocities at which a piano key is pressed and the corre-
sponding sound alterations. Results show that the method achieves
high accuracy using a specific neural architecture that is computa-
tionally efficient, presenting few trainable parameters, and it re-
quires memory only for one sample for each piano key.

1. INTRODUCTION

Physics-based sound synthesis methods can achieve remarkable
realism in emulating the sound generation of acoustic instruments.
However, the high-order nonlinear systems involved present a sig-
nificant challenge for real-time computation. For this reason, even
today, the vast majority of sound synthesizers for acoustic instru-
ments utilize sample-based sound synthesis, also known as Pulse-
Code Modulation (PCM) synthesis. For the piano, complete phys-
ical models that consist of the hammers, strings, soundboard, and
the surrounding air have been proposed [1, 2]. Recent works have
contributed knowledge on deeper aspects of piano sound gener-
ation, such as the coupling of transverse displacements [3], the
origin of the so-called ’phantom partials’ [4], and the radiation in
the soundboard [5, 6]. With the recent advances in audio appli-
cations of machine learning, neural networks have been adopted
for black-box modeling acoustic piano [7], where authors gener-
ate piano performance with an autoregressive model, conditioned
by MIDI-based information, and more recently also for gray-box
modeling [8, 9, 10], by using on the Differentiable Digital Signal
Processing (DDSP) framework [11]. These approaches consider
the sound signal to be synthesized as a combination of harmonic
and noise components, similar to Spectral Modelling Synthesis
[12] (SMS). The harmonic content is synthesized using a sum of
sine waves, with parameters extrapolated directly from the target
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sound [8]. These piano models, which rely on machine learn-
ing, often entail a significant number of parameters, and their high
computational complexity can limit their real-time applications. A
similar approach, which focuses on synthesizing the sound of in-
dividual piano keys, enhances the model by integrating additional
physics-based knowledge [9, 10]. This helps to reduce the required
computations and takes into account the generation of the quasi-
harmonic, percussive, and noise components, while an additional
module enables the emulation of trichords. Comparable methods
have been applied to other acoustic instruments, such as percus-
sions [13] and guitars [14, 15].

The approach proposed in this paper further extends knowl-
edge of how neural networks can be utilized for piano sound em-
ulation, aiming to achieve better computational efficiency while
maintaining the same level of emulation accuracy as state-of-the-
art techniques. Our integration of neural modeling with sample-
based synthesis enhances piano emulation and memory efficiency,
as it enables the emulation of piano notes starting from just one
example per key. Indeed, sample-based synthesis requires a trade-
off between memory occupation and realism, as both are affected
by the number of piano samples recorded and stored. In particular,
a larger number of samples can cover more scenarios with respect
to the stimuli that a player can impart to the piano keyboard and
pedals. Ideally, covering all possible scenarios would offer per-
fect emulation, but this is not feasible in practice due to diverging
memory requirements. When a specific stimulus for which sound
needs to be reproduced is not associated with any recording, one
or more processing techniques, such as interpolation, attenuation,
and filtering, are used to cope with the lack of associated sound.

The rest of the paper is organized as follows. Section 2 details
the methodology, including the neural architecture, dataset, train-
ing strategy, and the experiments we carried out to evaluate accu-
racy. Section 3 summarizes and discusses the results obtained,
comparing the use of different sub-blocks within the neural archi-
tecture. Finally, Section 5 concludes the paper with a summary of
our findings.

2. METHODOLOGY

The hybrid modeling approach we propose combines elements of
sample-based synthesis and neural sound processing. In particular,
the neural network is utilized to generate the sound of keys struck
at any velocity, starting from a single recording at a given veloc-
ity. The neural network processes the audio samples one at a time,
using the desired velocity as additional input information to con-
dition the network’s response. The neural network functions as a
filter or an audio processing block, trained with input-output pairs
that capture the dynamics of sound production. By doing so, our
method allows a single recording of a piano key to be transformed
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into a diverse set of nuanced sounds corresponding to different
playing velocities.

We consider two training scenarios: one with a single network
trained to cover all piano keys, and the other with separate net-
works trained for each individual piano key. The proposed model,
shown in Figure 1, is based on a Selective State Space (S6) layer
[16] inside a block such as in [17] and FiLM [18]-based network
conditioning, which is placed just before the output layer [19]. We
originally introduced this architecture for modeling virtual ana-
log effects [17]. The bigger model presented in this work has
521 trainable parameters, thus utilizing an insignificant amount
of memory compared to what is required for storing samples at
different velocities.

S6-based 
Block Conditioning 𝑦!𝑥! Output 

Layer

[𝑣! 𝑘!]

𝒔𝒏 𝒔𝒏𝒄

Figure 1: High-level architecture of the proposed neural network,
including the S6-based block, the FiLM-based conditioning block,
and the output layer. xn, yn, vn, and kn are the input sample,
output sample, velocity, and key value at time-step n.

2.1. Architecture

The S6 layer is described by the following equations:

hn = Ahn−1 +B(xn)xn

yn = C(xn)hn +Dxn (1)

where xn and yn are the input and output samples at time n. A,
B, C and D are real-valued matrices expressing linear mappings
between xn and hn the states of the system. In our specific con-
figuration, their dimensionalities are (N ×N ), (N × 1), (1×N ),
and (1 × 1), respectively, where N represents the dimensionality
of the state vector. The S6 layer is designed to capture long-range
temporal dependencies within a sequence of inputs by using the
state matrix A. The matrices B and C are dynamically computed
based on the input xn using a linear fully connected (FC) layer.
This enables them to adapt to the different inputs. On the other
hand, the coefficients of matrices A and D are learned during the
training process and remain independent of the input, providing a
stable foundation for encoding past system information. The S6
layer is integrated into a block structure illustrated in Figure 2, as
in [17].

The S6-based block is structured as follows. The first FC
layer contains twice the number of units as the length of the in-
put channel dimension, thereby mapping its input into a higher-
dimensional space. This projection is then split into two equal-
sized vectors. The first vector is processed through a convolutional
layer, followed by the Swish activation function [20], defined as

f(x) = x · sigmoid(βx), (2)

where β is a learnable parameter. This is followed by the S6 layer.
The second vector is element-wise multiplied by the output of the
S6 layer after it passes through the Swish activation function. The

output, combined with the residual connection, is then fed into
another FC layer that contains a number of units equal to the length
of the block’s input vector, which is followed by a Gaussian Error
Linear Unit (GELU) [21] activation function

GELU (x) = x · 1
2

[
1 + erf(x/

√
2)
]
, (3)

to produce the block’s output.

Swish

Linear  FC

sconv

ss

Conv1D

𝒔𝒏

sssm

[sp, sres]

S6

Swish

⊙

Nonlinear  FC

u:2

u:2 k:1

u:7

u:7, gelu

S6-based
Block

𝑥"

Figure 2: Internal architecture of the S6-based block featured in
the in architecture show in Figure 2. Details such as the number
of units (u), activation functions, and kernel size (k) are provided
next to the respective layers where they are applicable. Sp and
Sres derived from the projection of the input signal xn.

2.2. Conditioning

The conditioning process consists of the FiLM method and the
Gated Linear Unit (GLU), and it is illustrated in Figure 3. The
FiLM method applies an affine transformation to a vector based
on the conditioning value. Following the projection, a GLU de-
termines the amount of information that should pass. The GLU
employs a softsign activation function to regulate the flow of in-
formation.

The Conditioning block operates as follows: the velocity and
key values vn and kn are first projected using a linear FC layer,
which has a number of units equal to the double of the dimen-
sion of the output of the S6-based block sn. The resulting vector
is split into two coefficients, which are used to perform an affine
transformation on sn. After the affine transformation, the resulting
vector is processed by another linear FC layer, which doubles the
dimensionality. A softsign function is applied to one of the result-
ing coefficients, which is afterward multiplied by the other one to
produce the output of the conditioning block.
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Figure 3: Conditioning block consisting of FiLM and softsign-
based GLU. The input velocity and key vn and kn are linearly
transformed by an FC layer. The transformation results in an out-
put vector with double the dimensionality of the output from the
S6-based block, denoted as sn. This vector is then utilized to ap-
ply an affine transformation to sn. Subsequently, the transformed
vector is processed through another fully connected layer, further
doubling its dimensionality. Finally, a softsign function is applied
to one of the resulting components, and this value is multiplied by
the other component to yield the output of the conditioning block.

2.3. Dataset

To evaluate the proposed approach, we have utilized recordings
taken from the upright-closed and grand-piano from the BiVib
dataset1 [22]. The pianos used to collect the recordings are Yamaha
Disklavier, which are controllable by MIDI messages. Pianos fea-
ture a high number of keys, spanning over seven octaves. The com-
plex relationship between input velocity and the resulting sound,
determined by the acoustic mechanism of the piano, exhibits sig-
nificant differences between the low and high key registers.

We utilize all recordings at the ten different velocities avail-
able in the dataset, ranging from 12 to 111, values that cor-
respond to the 7-bit MIDI velocity values. Recordings in the
dataset are not associated with a specific velocity value but rather
with a velocity range because small variations in velocity pro-
duce negligible changes in sound [22]. For our experiments, we
have associated each recording with the lower bound of its re-
spective velocity range, resulting in the following velocity values:
[12, 23, 34, 45, 56, 67, 78, 89, 100, 111]. This resulted in a total of
880 recordings utilized in our experiments, each with a duration of
14 seconds, allowing the piano sound to fully decay after the key
had been struck and held. The experiments were carried out with
audio downsampled from 96 to 48 kHz, which is the rate at which
our model generates audio samples.

To assess the effectiveness of our method, we conducted two
different experimental trainings. First, we trained a set of key-
specific models, choosing one key from each octave across differ-
ent pitch classes: [A0, B1, C2, D3, E4, F5, G6, A#7]. Next,
we trained a single piano-specific model to predict arbitrary veloc-
ities for any of the 88 keys on the piano keyboard. This procedure
was repeated for each dataset.

2.4. Experiments Setup

The models are trained using the Adam optimizer [23] with a gra-
dient norm scaling of one [24] and the Mean Squared Error (MSE)
as the loss function. Models were trained for up to 100 epochs
with early termination if there was no reduction in validation loss
for 50 epochs. The learning rate is reduced by 25% each epoch,

1https://zenodo.org/records/2573232

starting from an initial learning rate set to 3 · 10−4. The losses on
the test set are computed using the model’s weights that minimize
the validation loss throughout the training epochs. The raw audio
recordings are split into segments of 2048 samples and processed
in batches of 8. The dataset is split into 90% for the training set
and 10% for the validation set. Both piano and key-specific models
were evaluated using a test set that included two specific velocities
for the eight keys mentioned in the previous section, allowing for
a fair comparison of the accuracy between both approaches.

When considering key-specific models, two different configu-
rations have been investigated. The first, denoted as T1, involves
training the neural network to generate sound at arbitrary veloc-
ities by processing a recording at the lowest velocity (12). This
is evaluated on recordings at intermediate velocities 56 and 100.
The other scenario, referred to as T2, evaluates the opposite situa-
tion, where the network processes recordings at the highest veloc-
ity (111). This is evaluated at intermediate velocities 56 and ve-
locity at 23. These experiments allow us to evaluate the network’s
prediction ability on unseen velocities in the middle of the velocity
range and near the other extreme of the range. When evaluating
a single model intended to process recordings for all piano keys
and produce sounds at arbitrary velocities, the assessment utilizes
the configuration that yielded the best results in prior experiments
with key-specific models, either T1 or T2. To assess the accuracy
of the model, we computed the error-to-signal-ratio (ESR) and the
multi-resolution STFT error defined as:

1

N

∑
m

∣∣∣∣∣∣ |STFTm(y)| − |STFTm(ŷ)|
|STFTm(y)|

∣∣∣∣∣∣
1

+
1

N

∑
m

|| log(|STFTm(y)|)− log(|STFTm(ŷ)|)||1
(4)

where m = [256, 512, 1024].
To further assess the proposed neural architecture, we com-

pared its accuracy in processing sound to match unseen veloci-
ties with against a long short-term memory (LSTM)-based model,
which served as a baseline. Specifically, we replace the S6-based
block with an LSTM layer with 8 units. The choice of units was
made to match the number of trainable parameters of the proposed
S6-based model. Audio examples, source code, and trained mod-
els described in this paper are available online 2.

2.5. Perceptual Evaluation

Perceptual evaluation is conducted using Mushra tests [25].
Specifically, we carried out listening tests to evaluate the unseen
velocities at pitches [A0, C2, D3, E4, F5, A#7] against the ac-
tual reference recording taken from the dataset. The test consid-
ers the specific-key models in both configurations (T1 and T2).
The tests are conducted using the WebMUSHRA platform [25]
and involved 20 participants with professional music expertise, in-
cluding musicians and music producers. We utilize a standardized
setup consisting of a laptop, a studio-grade audio interface, and
high-end studio headphones. The test includes two sessions with
twelve different listening examples each, conducted in a fixed or-
der. In each example, the audio signal was limited to a duration
of 7 seconds. We use a single anchor, a low-pass version of the
reference with a cutoff frequency set to three times the fundamen-
tal frequency of the key. This approach deviates from the typical

2https://github.com/RiccardoVib/Neural-piano
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cutoff frequencies used in MUSHRA tests, which generally utilize
7 kHz and 3.5 kHz low-pass filters. The adjustment ensures that
the cutoff filter has an audible effect on test examples even at low
pitches, which cannot be achieved with conventional fixed cutoff
frequencies.

3. RESULTS

Table 1 summarizes the loss values for each model across sce-
narios T1 and T2. The proposed model demonstrates superior
performance in both scenarios compared to the LSTM baseline.
It exhibits lower MSE in scenario T2, although the STFT loss is
marginally higher. Additionally, the proposed model shows less
variance in results, offering more consistent performance across
the octaves. When utilizing the grand piano dataset, the losses
are generally higher, indicating a more challenging modeling task.
Overall, the trend of the results is consistent with the upright
dataset. In particular, the S6-based model is performing better than
the LSTM-based model, and the T2 scenario results in a better
configuration than the T1.

When evaluating performance, it’s crucial to consider that the
dataset consists of real recordings, which inherently include back-
ground noise. The relative impact of this noise is inconsistent
across the dataset. At lower pitches, the piano’s signal energy is
higher than at higher registers, while the background noise level
remains constant. Therefore, when presenting the test set results,
we provide a rough estimate of the signal-to-noise ratio (SNR) for
two velocity examples at each pitch. This estimate is based on
the assumption that only noise is present in the last 5 seconds of
each recording, while the rest of the duration contains both sig-
nal and background noise. However, this estimation approach has
limitations, as the decay rate of notes in lower pitch registers is
much slower than in higher ones. Consequently, for the two low-
est pitches in the test set, a residual signal remains in the final 5
seconds of the recording, yet it fully decays within the segment.
Additionally, velocity also influences the decay rate, albeit to a
lesser extent, with lower velocities exhibiting faster decay.

Table 2 presents the losses of the proposed model for each
key and training scenario, along with SNR estimates for the target
examples in the test set. For both datasets, in the T2 scenario, the
model excels in MSE and STFT losses but demonstrates poorer
ESR performance compared to the T1 scenario. Further investi-
gation indicates that these models struggle to accurately predict
the tail part of each target recording, which is largely composed
of background noise. However, matching sample-level noise is
neither significant nor necessary for creating perceptually equal
signals. In this final segment, a noticeable mismatch exists be-
tween the background noise level in the target and the softer noise
predicted by the model, which was also suggested by listening
tests. The model’s apparent ability to reduce background noise
levels can be seen as beneficial. Considering that SNR increases
with velocity and decay rate is proportional to pitch, alongside the
low relevance of prediction error over the noise segment, these
aspects can enhance the interpretation and comparison of T2 ver-
sus T1 results. To facilitate comparison between different keys, a
bar plot visualization of loss and metrics is provided in Figure 4.
Models trained with the upright piano dataset display lower errors
when examining the STFT and ESR metrics, particularly for lower
keys. In contrast, models trained with the grand piano dataset find
greater consistency across keys and present less variance in perfor-
mances. Conversely, the MSE shows greater variation across both

datasets due to the differing amplitudes among keys, making it a
less intuitive indicator.

When considering a single model designed to process record-
ings for all 88 piano keys, the model’s accuracy decreases as the
complexity of the task increases, as evident in Table 3. In this case,
the model performs better with the grand piano dataset. Figure 5
shows the results for the perceptual listening test, where the box
plots display the median, lower, and upper quartiles, maximum and
minimum values, and outliers of the responses. Of the 20 partici-
pants who participated in the listening tests, no one was removed
in the post-screening because scoring the hidden reference below
90 in more than 15% of trial conditions. The plots reveal that
the T1 and T2 configurations produce comparable perceptual out-
comes across the entire range of velocities, with T2 demonstrat-
ing a marginally superior performance. The T-test yields a p-value
of 0.013, indicating that this difference is statistically significant.
Both scenarios exhibit a large variance in the ranking. Specifi-
cally, low-ranked examples are consistently associated with exam-
ples with higher pitches and lower velocities. In such cases, the
faster decay rate reveals a longer segment of the evaluated example
where the mismatch in background noise level from the target, as
previously discussed, becomes more audible. Consequently, even
a piano note with good sound quality might receive a lower rat-
ing when compared to a reference with higher background noise
levels.

Additionally, from the listening test results, we specifically
isolated the ratings of examples emulating only the velocity fur-
thest away from the input recording, specifically 100 for the T1
case and 23 for the T2 case. When analyzing these extreme veloc-
ities, the results indicate that the T2 configuration is more percep-
tually accurate, providing a closer match to the reference. Here,
the p-value is 1.71 · 10−8, demonstrating statistical significance.
This suggests that the T2 configuration is especially beneficial in
these instances, offering enhanced performance compared to T1,
particularly in emulating velocities that are most distant from the
input recording. This scenario represents the most challenging sit-
uation for the models.

Figure 6 shows the spectrograms for the highest and lowest
keys in the dataset, A0 and A#7, and for the key in the middle,
D3, for the T2 case. The spectrograms show a good match be-
tween predictions and targets. However, the sound generated by
the model often exhibits more energy at high frequencies com-
pared to the target, suggesting that the model does not sufficiently
attenuate energy from the recordings at the highest velocity.

4. EFFICIENCY

The models proposed in this paper, namely the piano-specific and
key-specific models, feature 521 and 505 trainable parameters, re-
spectively—a relatively low number given the complexity of the
task. These models require approximately 606 and 590 floating-
point operations (FLOPs) per audio sample. Table 4 compares
these models with a PCM synthesis approach, which utilizes sepa-
rate recordings for each key and velocity. The PCM method repre-
sents a worst-case scenario in terms of memory requirements but
offers the best possible accuracy. It’s important to note that in PCM
piano synthesis, multiple recordings are often stored for the same
note-velocity pair to capture subtle variations that occur when re-
peatedly striking the same key with the same velocity—an aspect
not considered in our current comparison.

To evaluate the memory requirements of our proposed mod-
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Table 1: Test set losses for the architectures considered in the experiments for each training scenario. Additionally, the table includes the
error-to-signal-ratio (ESR) and STFT loss metrics. The reported errors are the mean and standard deviation calculated across all keys.

Upright

Model MSE ESR STFT MSE ESR STFT
Proposed T1 2.36 · 10−4(3.12 · 10−4) 0.19(0.21) 0.44(0.30) T2 4.83 · 10−5(2.23 · 10−5) 0.22(0.25) 0.47(0.35)

LSTM 3.82 · 10−4(4.00 · 10−4) 0.29(0.26) 0.61(0.41) 5.52 · 10−5(2.66 · 10−5) 0.25(0.25) 0.54(0.35)

Grand

Model MSE ESR STFT MSE ESR STFT
Proposed T1 1.59 · 10−3(1.11 · 10−3) 0.47(0.29) 0.58(0.41) T2 6.07 · 10−4(6.38 · 10−4) 1.06(0.35) 1.06(0.27)

LSTM 2.32 · 10−3(1.52 · 10−3) 0.87(0.10) 1.05(0.04) 8.21 · 10−4(8.45 · 10−4) 1.58(0.70) 1.07(0.55)

Table 2: Test set losses of the proposed model for each key in the test set under different training scenarios. The table includes ESR and
STFT losses along with the estimated SNR in dB for two velocity examples at each pitch in the test set. In configuration T1, the test set
velocities are 56 and 100, while in configuration T2, they are 56 and 23.

Upright

Key ∼SNR (dB) MSE ESR STFT ∼SNR (dB) MSE ESR STFT
A0 T1 96− 102 1.05 · 10−3 0.19 0.96 T2 96− 87 6.50 · 10−5 0.08 0.63
B1 143− 171 8.33 · 10−5 0.02 0.37 143− 159 5.95 · 10−5 0.05 0.52
C2 192− 202 3.29 · 10−5 0.01 0.31 192− 164 2.26 · 10−5 0.03 0.47
D3 173− 184 1.24 · 10−4 0.03 0.42 173− 167 5.47 · 10−5 0.05 0.42
E4 177− 187 1.66 · 10−4 0.14 1.37 177− 167 4.64 · 10−5 0.17 0.83
F5 130− 173 1.26 · 10−4 0.18 1.60 130− 88 1.10 · 10−5 0.15 0.94
G6 119− 158 1.59 · 10−4 0.24 1.48 119− 81 4.07 · 10−5 0.42 1.10
A#7 31− 69 1.45 · 10−4 0.70 1.67 31− 20 8.62 · 10−5 0.83 1.91

Grand

Key ∼SNR (dB) MSE ESR STFT ∼SNR (dB) MSE ESR STFT
A0 T1 179− 204 2.71 · 10−3 0.79 1.86 T2 179− 122 6.79 · 10−4 0.95 1.54
B1 118− 130 3.28 · 10−3 0.49 1.05 118− 111 1.99 · 10−3 1.45 1.40
C2 172− 205 2.29 · 10−3 0.57 0.82 172− 163 1.22 · 10−3 1.59 1.42
D3 160− 192 1.71 · 10−3 0.71 1.73 160− 112 3.84 · 10−4 0.97 1.45
E4 162− 208 1.11 · 10−3 0.43 1.51 162− 111 2.18 · 10−4 0.55 1.45
F5 142− 207 1.63 · 10−3 0.78 2.28 142− 86 2.24 · 10−4 0.84 1.72
G6 111− 183 1.46 · 10−3 1.60 3.35 111− 7 1.10 · 10−4 1.41 1.77
A#7 69− 134 2.08 · 10−3 0.93 1.97 69− 20 1.93 · 10−5 0.74 2.24

els versus PCM synthesis, we consider audio samples encoded
as 16-bit integers and trainable parameters represented as 32-
bit floating-point numbers. For PCM synthesis, we consider the
worst-case scenario where all pitch-velocity pairs are stored in
memory. Therefore, accounting for 9 different velocity recordings
for the 88 keys, each lasting 14 seconds, results in a total memory
demand of 1, 064 gigabytes (GB).

In contrast, our proposed models significantly reduce mem-
ory usage. For the recordings associated with one velocity per
key, only 118, 272 megabytes (MB) are required for the whole
88 keys of the piano. On the other hand, the proposed model
requires storing trainable parameters. The piano-specific model
utilizes 2, 084 bytes across all keys, while the key-specific model
requires 2, 020 bytes per key, summing up to 177, 760 bytes in
total. Overall, this approach enables substantial memory sav-
ings—approximately 946, 173 MB—when adopting either the
piano-specific or key-specific model.

When considering polyphonic synthesis, which is typically
used in piano synthesis, it’s important to note that the proposed
model is capable of providing only one voice. Therefore, mul-

tiple concurrent models are needed to achieve polyphony, mak-
ing the overall computational requirements identical for both the
piano-specific and key-specific approaches. However, given the
low impact on memory requirements of the key-specific approach
and its superior accuracy, we suggest this as the preferred method.
Alternatively, a trade-off between the two approaches can be pro-
posed, such as utilizing key-range-specific models. This is similar
to PCM piano synthesis, where a specific sample is generally used
over a given range of semitones. Lastly, while our focus is on small
models, increasing the size of the neural network can enhance ac-
curacy, though it comes at the cost of higher computational de-
mands.

5. CONCLUSIONS

We presented a novel approach to piano emulation. A neural
model is trained to learn how to process key recordings taken
at a single velocity to emulate the sound of arbitrary velocities.
Specifically, the neural network is trained on a collection of real
piano recordings and acts as a filter that processes the available
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T1 T2

Upright

Grand

Figure 4: Bar plots of the mean-squared-error (MSE), the error-to-signal-ratio (ESR), and STFT loss metrics from Table 1, for models
trained with the the upright (top) and grand (bottom) piano dataset, and for the T1 (left) and T2 (right) configuration.

Table 3: Test set losses of the proposed model when considering all notes included in the datasets and each key in the test set. The table
also reports the ESR and STFT loss.

Upright Grand

Key MSE ESR STFT MSE ESR STFT
A0 1.02 · 10−4 0.04 0.22 2.36 · 10−4 0.20 0.44
B1 2.15 · 10−3 1.36 1.20 4.72 · 10−3 2.16 1.02
C2 3.17 · 10−3 3.59 1.09 3.97 · 10−3 3.29 0.72
D3 3.91 · 10−3 2.01 0.63 1.02 · 10−3 1.56 0.80
E4 5.55 · 10−4 1.36 1.16 3.81 · 10−4 0.57 0.53
F5 2.60 · 10−4 1.14 1.29 5.14 · 10−4 1.09 0.79
G6 7.03 · 10−3 2.78 1.28 4.03 · 10−4 2.86 0.96
A#7 1.29 · 10−4 1.62 1.69 4.72 · 10−5 1.30 2.13

Table 4: FLOPs per sample, and memory requirements for the proposed models compared to PCM synthesis, where applicable. PCM syn-
thesis uses 9 recordings for each key-velocity pair. Memory requirements for audio samples and model parameters are detailed separately.
The requirements are based on a piano with 88 keys.

Method FLOPs per sample Sample memory Parameters memory Total memory
PCM synthesis n.a. 1, 064448000 B n.a. 1, 064448000 B
Piano-specific 606 118, 272000 B 2, 084 B 118, 274084 B
Key-specific 590 118, 272000 B 177, 760 B 118, 449760 B

recordings to accurately emulate the sound associated with differ-
ent stimuli. We focus on recreating the sound of individual keys at
any velocity, which indicates the key press strength, starting from
a single stored sample recorded at a single velocity.

We present two different scenarios: neural networks process-
ing key-specific recordings utilizing velocity as an input to con-
dition the sound processing, or a unique neural network for all
the keys that utilize velocity and key number as input. In both
cases, audio samples are processed one at a time, thereby achiev-
ing the lowest possible input-output latency. State-space models,
particularly an S6 layer within a designed block, offer good em-
ulation accuracy, especially when the network is used to generate
the sound of lower velocities by processing the recording taken at
the highest velocity. Both quantitative evaluation metrics and per-

ceptual listening tests confirm this trend. On the other hand, the
accuracy of this approach seems to diminish for keys in higher oc-
taves because of the higher presence of background noise in the
recordings. Utilizing recordings with higher SNR or performing
specific noise reduction techniques may improve the performance.
The paper focuses on small networks, with the expectation that in-
creasing the network size will improve results, albeit at the cost
of increased computational complexity. The method is evaluated
using two datasets comprised of real recordings: one collected
from an upright piano and the other from a grand piano. The
key-specific models deliver better performance, likely due to the
reduced problem complexity associated with modeling each key
individually. Lastly, the paper discusses how the approach mini-
mizes the number of recordings needed to be stored, and thus the
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Figure 5: Box plot illustrating the rating results from the listening
tests (top) and the rating results when emulating only the velocity
furthest away from the input recording (bottom). Magenta hori-
zontal lines denote median values, and diamond markers represent
the mean values. Outliers are displayed as crosses.

associated memory requirements, by using a neural network.

The proposed method introduces a novel possibility for em-
ulating individual piano notes without the need to store all audio
samples and an approach that, in principle, can work with other
acoustic musical instruments. This method can be integrated into
the approach used in [10] to emulate trichords and other com-
plex performance scenarios, such as re-stricken keys, arpeggios,
and chords consisting of different numbers of notes and arbitrarily
simultaneously played notes.

Although in our experiments, vn is held constant throughout
the duration of the played note, since the pressure applied to a key
that is held down does not influence the sound generation of a pi-
ano, our proposed model theoretically allows vn to be changed
at every sample. This opens up possibilities for the design of pi-
ano synthesizers that incorporate features not found in their actual
acoustic counterparts, such as modulating the synthesized sound
by linking velocity to control parameters such as MIDI aftertouch,
featured in high-end keyboards.
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Figure 6: Spectrograms of the T2 test set target (left) and predic-
tion (right) for A0 (top), D3 (middle), and A#7 (bottom) keys at
velocity 34.
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