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ABSTRACT

Machine learning models have become ubiquitous in modeling
analog audio devices. Expanding on this line of research, our study
focuses on Voltage-Controlled Oscillators of analog synthesizers.
We employ black box autoregressive artificial neural networks to
model the typical analog waveshapes, including triangle, square,
and sawtooth. The models can be conditioned on wave frequency
and type, enabling the generation of pitch envelopes and morph-
ing across waveshapes. We conduct evaluations on both synthetic
and analog datasets to assess the accuracy of various architectural
variants. The LSTM variant performed better, although lower fre-
quency ranges present particular challenges.

1. INTRODUCTION

Analog electronic circuits play a crucial role in a significant cat-
egory of musical equipment, like synthesizers and audio effects,
offering a unique sound that enhances their appeal. The field of
virtual analog modeling aims to digitally replicate these analog au-
dio effects and synthesizers. Analog synthesizers create sound us-
ing Voltage-Controlled Oscillators (VCOs), which generate elec-
trical signals through rapidly changing voltages, producing a va-
riety of waveshapes with different timbres, including the common
sawtooth, rectangular-pulse, and triangular waveforms. The fre-
quency is controlled by an input voltage, typically adhering to
the 1V/Oct tracking standard. The sound’s timbre is shaped by
Voltage-Controlled Filters (VCFs), and a Voltage-Controlled Am-
plifier (VCA) dynamically controls the synth voice. This method,
known as subtractive synthesis, is characteristic of the *East Coast’
synthesis approach. In contrast, synthesizers using the *West Coast’
synthesis approach take an additive synthesis-like method. They
incorporate a wavefolding circuit, which enriches waveforms by
inverting or folding parts of the waveform to add harmonic con-
tent. In this approach, the synth voice is controlled through a Low
Pass Gate (LPG), a circuit which combines filter and amplifier-like
characteristics in order to simultaneously affect a sound’s timbre
and its loudness.

In these signal flows, VCO circuits are the primary signal
generators, converting a voltage that represents frequency into
an audio signal oscillating at that frequency. Noise generators
can also be used to add extra sound coloration. Although VCO
waveshapes are relatively simple, they are not band-limited. Thus,
the primary challenge in their digital emulation is developing
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computationally efficient algorithms that minimize aliasing dis-
tortion To address this issue, several methods have been proposed,
including wavetable synthesis [1], discrete summation formulas
[2l], frequency-domain methods [3], bandlimited impulse trains
(BLITs) [4], bandlimited step functions (BLEPs) [3]], differenti-
ated polynomial waveforms (DPWs) [6], polynomial transition
regions (PTRs) [7], and simple oversampling. The choice of
algorithm depends on the specific application’s efficiency and
aliasing reduction requirements.

While artificial neural networks (ANNs) have been suc-
cessfully employed to model analog audio effects over the past
decade, their application in modeling audio oscillators, particu-
larly VCOs, remains limited and underexplored. For instance,
a hybrid approach employing a neural oscillator based on a
Deep Convolutional Neural Network was designed to generate
wavetable content from timbral descriptors [8].

This work investigates the use of ANNs to emulate VCOs
that generate multiple waveforms at arbitrary frequencies. The
approach involves training specifically designed autoregressive
ANNs with data recorded from real VCOs, as preliminary tests
suggest this approach is more effective than other generative
models. The architecture generates audio samples one at a time,
minimizing latency between control data—such as frequency
and waveshape type—and audio output, theoretically support-
ing real-time interactive sound synthesis. Conceptually, this
approach is similar to wavetable synthesis, where waveforms
from real VCOs are stored and scanned to reproduce arbitrary
frequencies. However, the ANN model learns how VCOs generate
signals across all frequencies, enhancing synthesis by capturing
waveshape variations due to the nonlinear characteristics of
analog VCOs. This leads to improved accuracy, despite the high
computational complexity involved. Furthermore, as a data-driven
black-box synthesis approach, its performance concerning alias-
ing is predominantly influenced by any aliasing present in the
recordings used to train the ANN, rather than by limitations or
approximations of the synthesis algorithm.

Popular examples of autoregressive models are the
Wavenet [9] and the SampleRNN [10], which were em-
ployed for various audio tasks. We designed autoregressive
models based on the most popular types of neural layers: a fully
connected (FC), Convolutional, Recurrent, and the Feature-wise
Linear Modulation (FiLM) [11]. We show how the method allows
continuous frequency control and morphing across waveshapes.

The remainder of the paper is organized as follows: Section
[] outlines the methodology and dataset used for our research.
Section [3] presents and discusses the findings, and Section [
provides concluding remarks.
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2. METHODS

In this paper, we explore autoregressive neural networks for VCO
emulation. For the experiments, we collected audio at different
frequencies from the VCOs of an analog subtractive synthesizer.
In addition, to further evaluate the neural network’s ability to gen-
erate signals at unseen frequencies, we have collected equivalent
synthetic datasets. When training the system, we use an input pa-
rameter to inform the network of the frequency to generate. This
parameter allows for continuous pitch modulations. An additional
parameter can be used to inform the waveshapes to be generated,
allowing morphing among those available in the dataset.

2.1. Architecture

The architecture, illustrated in Figure[T] is composed of five layers:
Backbone, Conditioning, Compression, State, and Output. The
Backbone layer can be implemented using either temporal con-
volutional neural networks (TCNs) or recurrent neural networks,
including the Elman network (vanilla RNN) and variants such
as Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU). The Conditioning layer integrates a Feature-wise Linear
Modulation (FiLM) [11] followed by a Gated Linear Unit (GLU)
[12]}, as in [[13]. The Compression layer consists of a FC layer,
while the State layer includes two FCs, and the Output layer has
one FC. Both the State and Output layers use a hyperbolic tangent
activation function. The Compression layer is composed of four
neurons, whereas the State layer contains the same number of neu-
rons as the Backbone layer. The Output layer has a single neuron.

The Compression and State layers are added to the architec-
ture only when the Backbone layer includes recurrent neural net-
work configurations, as they feature internal states. The Compres-
sion layer reduces the number of recurrent steps performed by
the subsequent layer, significantly lowering computational costs.
The State layer recalculates the initial internal states of the re-
current layer each time a new input buffer is fed to the Com-
pression layer, initiating the recurrent steps necessary to gener-
ate a new output sample. This approach differs from truncated
back-propagation through time, where states would persist beyond
a recurrent step count equal to the dimensionality following the
Compression layer. While the architecture does not guarantee that
the Compression layer functions along the time axis, experiments
demonstrate that accuracy is either comparable to or better with
the Compression layer than without it.

The network operates in an autoregressive manner, using an
input buffer as a shift register, which includes the past 7" generated
audio samples. This approach provides the network with context
to generate an audio signal that is continuous and consistent. In
initial experiments, we set this value to approximately 5% of the
number of samples in the longest period in the datasets, while in
further experiments, we investigate the impact of this architectural
parameter on the overall learning.

The frequency and shape parameters, both normalized be-
tween 0 and 1, serve as inputs to both the State layer, if present,
and the Conditioning layer. If the Backbone layer is an LSTM,
the State layer comprises two parallel FC layers, corresponding to
the LSTM’s two types of states. For GRU and RNN architectures,
the State layer consists of a single FC layer, as these networks
have only one type of state. The number of units in the State layer
matches the number of units in the Backbone layer, ensuring com-
patibility between the internal blocks of the architecture.

Only during training
— Only during inference
== Onlyif the Backbone layer includes internal states
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Figure 1: The architecture uses a shift buffer that stores the last T
input audio samples, [Yn—7, ..., Yn| , which the network processes
to generate the next output sample, yn+1. These samples are fed
into the Backbone layer, which is comprised of either a convolu-
tional or recurrent layer. Two parameters, f (frequency) and c
(shape), condition the wave generation. In recurrent-based archi-
tectures, these parameters help compute the internal states H us-
ing an FC network, while another FC layer compresses the input
vector, reducing the number of recurrent steps required to compute
the output and therefore decreasing the computational complexity.
A final linear FC layer produces the output sample Yy, 1. During
training, white noise Z ~ N(0,0.1) is added to the input signal
to improve robustness during inference.

2.2. Conditioning Techniques

The Conditioning layer is positioned after the Backbone layer, as
this arrangement is more effective [13] and consists of a FiLM
followed by a GLU having softsign as an activation function. The
FiLM layer applies an affine transformation to the vector repre-
senting the conditioning information:

k= fi1(Yo)w + f2(Ys) M

where w is the output vector of the backbone layer, k the result
from the FILM operations, and f1 and f2 are two vectors obtained
from splitting the output of a linear FC layer, having many units
double of the dimension of w, fed with [f, c].

A GLU layer follows the FILM block to determine the infor-
mation that should flow. Similarly to FiLM, the GLU layer con-
sists of a linear FC layer that takes the FILM output vector k and
computes a vector twice its length. The resulting output is split
equally into two vectors g1 and g2, to perform the following op-
eration:

Y, = g1 (k) © softsign(gz(k)) 2)

The GLU layer determines the flow of information through the
network, acting as a logical gate. The softsign activation function
controls the extent to which the control parameters should influ-
ence the final output, and it is defined as follows:

softsign (z) = (T'i 1) 3)

2.3. Datasets

The datasets include recordings from a real analog VCO and a dig-
ital emulation, featuring data from the Korg Monologue E] and the
Ableton Live Operator ﬂ Three different waveshapes have been

Ihttps://www.korg.com/de/products/synthesizers/
monologue/
“https://www.ableton.com/en/packs/operator/
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collected from the VCO of the Monologue: triangle, square, and
sawtooth, while for the Operator, sinusoidal and sawtooth wave-
shapes. In the rest of the paper, we refer to the Monologue dataset
as ‘Analog’ and to the Operator dataset as ‘Synthetic’.

To collect the data from the hardware analog synthesizer, we
used a MOTU M4 audio interface to record the output generated by
triggering the integrated sequencer for all 72 pitches in the range
[Eo, Es]. All the VCO signal post-processing and modulations
were deactivated in order to record the clean VCO output. This
process was repeated for each waveshape. The audio was recorded
at 96 kHz with a total duration of 8 seconds per pitch and subse-
quently downsampled to 48 kHz when training the models. The
recordings were postprocessed, obtaining a separate audio file for
each pitch and waveshape value, with their first sample aligned
with phase 0. The length of the files was limited to 262, 144 sam-
ples at 48 kHz, equivalent to 5.41 seconds.

To collect the data from the Operator, we utilized the sequenc-
ing and recording features of the hosting Digital Audio Worksta-
tion, Ableton Live. Also in this case, the setting of the Opera-
tor was tuned to obtain an output including the clean virtual VCO
signal. In this case, the generation was forced to start at phase
0, and the VCO frequency was controlled to generate signals be-
tween 100 and 300 Hz, with incremental steps of 1 Hz. This was
repeated for each waveshape. The ‘Synthetic’ dataset presents a
finer and linear pitch resolution across the examples, while in the
‘Analog’ dataset, the frequency increments are nonlinear and given
by f, = 2P/'2 Hz, where p represents the pitch index between
0 and 71. The amplitude of all recorded examples is individually
normalized between 1 and —1. The waves’ fundamental frequency
for the analog dataset ranges between 20 Hz and 1318 kHz, mean-
ing that the longest wavelength consists of 2,400 samples, while
the shortest is 36. For the synthetic, the collected frequency range
is 100 — 300 Hz, meaning the longest wavelength consists of 480
samples, and the shortest is 360.

2.4. Training, Validation and Test set

We have created four different training, validation, and test sets us-
ing the ‘Analog’ datasets to evaluate different aspects of the VCO
neural model. First, we have created variations on the individual
example durations. In particular, we truncated the recordings to
(2[15:16.17.18]y gamples. The different dataset sizes were used to
explore the extent to which the model learn with different example
durations, which range between 0.68 and 5.41 seconds. Secondly,
from each recording associated with a frequency-shape pair, 10%
of the data is extracted, and the first 3276 samples are allocated to
the test set, while the remaining are allocated to the validation set.
This approach enables the creation of a test set of identical size, al-
lowing for a fair comparison on the generation of equal-length sig-
nals. These wave samples originate from phases other than zero,
ensuring a variety of waveshape starting points. This processing
was applied to each ‘Analog’ dataset, which will be referred to as
‘Analog-15’, ‘Analog-16’, ‘Analog-17’, and ‘Analog-18’, with the
numerical suffix indicating the example lengths.

We employed the ‘Synthetic’ datasets to generate five distinct
variants. For each waveshape in these datasets, training sets were
designed by including varying amounts of frequency examples.
This was achieved by systematically excluding frequency exam-
ples at specific intervals within the frequency range [100, 300] Hz,
which was sampled at steps of 1 Hz. Specifically, we removed an
example every 2, 4, 8, 16, or 32 Hz starting from 100 Hz, thereby

creating five unique training sets. These intervals corresponded to
the exclusion of 50%, 25%, 12.5%, 6.25%, and 3.125% of the
dataset from the training sets, respectively. The test set, shared
across all five variants, includes 3276 samples of examples taken
every 32 Hz, which is 3.125% of the dataset, which is never part
of any of the five training sets described above. The validation set
was constructed by slicing (5%) of each example from the train-
ing set, ensuring that each example starts from a phase other than
zero, providing diversity to the validation process. In this case,
the datasets are named ‘Synthetic-2’, ‘Synthetic-4’, ‘Synthetic-8’,
‘Synthetic-16’, and ‘Synthetic-32’, with the numerical suffix in-
dicating the step value used to exclude frequency examples from
the training set, as explained above. These sets are used to inves-
tigate the models’ ability to generate audio at unseen frequencies.
Table [l summarizes the datasets.

Table 1: Summary of the designed datasets, including the type of
dataset, the individual example durations in samples, and shapes
included in the dataset. Sin, Tri, Squ, and Saw refer to sine, trian-
gle, square, and sawtooth waveshapes, respectively.

Dataset Durations Waveshapes
Analog-[15, 16,17, 18] | 201617181 ' Tyj "Squ, Saw
Synthetic-[2, 4, 8, 16, 32] 218 Sin, Saw

2.5. Experiments

The variants considered for the Backbone layer include vanilla
RNN (Elman network), GRU, LSTM, and TCN. Experiments are
carried out using various configurations, with unit numbers of
[16, 32, 64] and T values of [64, 96, 128, 256] samples, which de-
fine the length of the input buffer. The TCN-based model features
4 layers, each with a kernel size of 3 and a dilation rate of 21, where
[ represents the layer number. On the other hand, RNN, GRU, and
LSTM variants include only one layer.

To enhance the model’s robustness against varying error lev-
els encountered during inference, Gaussian noise Z ~ AN (0,0.1)
is added to the input to provide robustness against errors that arise
between predictions and ground truth. These errors can accumu-
late over inference iterations, generating one audio sample each,
and impact subsequent predictions. By incorporating noise, the
network becomes less dependent on error-free previous samples
for generating the next output sample. Instead, it learns to main-
tain the integrity of the shape even when dealing with noisy sam-
ples within the input buffer.

The evaluation employs normalized mean squared error
(NMSE) and single-resolution fast Fourier transform error (FFTE),
using a resolution of 256. These metrics are calculated based on
the model’s weights that have minimized the validation loss during
training epochs, ensuring an accurate assessment of model perfor-
mance throughout the training process.

The initial experiments aimed to identify the architecture with
the best accuracy, assessed through loss metrics and visual in-
spection of the predicted waveforms. Consequently, we trained
all models using the ‘Analog-18’ dataset, waveshapes subset sep-
arately, training one model for each waveshape at a time. In this
case, the c (shape) input is removed from the model as only the
frequency is used as input. To ensure comparable expressivity, ar-
chitectures were designed to have a similar number of parameters,
as detailed in Table 2]
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Table 2: Units and number of parameters for the architectures
used in the comparative experiments.

Model | Units | Parameters || Model | Units | Parameters
TCN 38 25,309 RNN 92 26,793
GRU 70 26,149 LSTM 64 26, 181

After identifying the best-performing architecture, we con-
ducted further experiments exclusively with the two top-
performing architectures. We explored the impact of training
set examples’ lengths on the performance by training the mod-
els on the ‘Analog-15’°, ‘Analog-16’, ‘Analog-17’, and ‘Analog-18’
datasets. Also for this experiment, the c input is removed from the
models, and training was performed for one waveshape at a time.

Given the significant number of audio samples per period in
the lowest octave of the ‘Analog’ dataset, we further investigate
how different sizes of 7" affect the model’s learning for the lower
frequencies when trained in a dataset including all the possible
frequencies. This involved training the model for different values
of T', with the ‘Analog-18’ dataset, utilizing the triangle, square,
and sawtooth shapes separately.

Subsequently, we investigated the architecture’s efficacy in
predicting frequencies unseen during training compared to how
many frequency examples has been included in the training. We
exploited the ‘Synthetic’ datasets because they have linear and
finer frequency resolution. Therefore, we trained the model us-
ing all the ‘Synthetic-XX’ datasets featuring different numbers of
frequency wave examples in the training set. The buffer size T',
in this case, is set to 32 since the lower frequency included is 100
Hz, which is not as low as in the ‘Analog’ dataset. This allows a
significant speed-up in training time.

Finally, we investigated how the model’s performance adjusts
when tasked with learning all waveshapes. In this scenario, the ad-
ditional conditioning parameter c, defining the shape, is included
in the model. The parameter ranges from 0 to 1, where 0 is asso-
ciated with triangle, 0.5 sawtooth, and 1 square waveshape.

2.6. Training Strategy

The models are trained for a maximum of 1000 epochs and use
the Adam optimizer. The training was stopped earlier in case of
no reduction of validation loss for 50 epochs. In addition, we im-
plemented a time-based schedule for the learning rate, where it
decreases by 75% each epoch, starting from an initial learning rate
of 3-10*. The loss function used is the normalized mean square
error (NMSE), defined as

Zg:o(yn - yAn)Q
o v3

with y the ground-truth samples, ¢ the predicted samples, and N

the size of the batch. Lastly, the teaching forcing was exploited,

which involves feeding the ground-truth samples back into the

model after each step, thus forcing the model to stay close to the
ground-truth sequence.

NMSE = “)

3. RESULTS

Table [3] summarizes the accuracy of models using the variants of
the Backbone layer when trained using triangle, square, and saw-
tooth waveshapes separately from the ‘Analog-18’ dataset. The

performance metrics are reported separately for each of the six oc-
taves included in the dataset. Each wave example included in the
test set is generated with the buffer initialized using the ground
truth samples. It is evident that models using RNN and LSTM
as Backbone layers consistently deliver superior accuracy across
all datasets. Specifically, the LSTM case excels with the trian-
gle waveform case, whereas the RNN and LSTM variants perform
similarly with square and sawtooth datasets. Overall, recurrent-
based architectures outperform the temporal convolutional model,
with the RNN and LSTM variants being the most accurate.
Figure [2]shows target versus predicted waveforms for two ex-
amples for each variant of the Backbone layer. It is evident that
only the LSTM variant could generate the period of the wave-
shape for the lowest Ey, which has a frequency of 20 Hz and a
period of 2400 samples long. Other variants are unable to repro-
duce such a low frequency with the considered settings. In addi-

(O e ———
|
. [ A4 A7
T 007 target | /
£ --- TCN 1 i/ /
=% - |
£ -051 GRU :
< RNN / |
--- LSTM
-1.0 T T T T T T
0 5 10 15 20 0 5 10 15 20
Time (ms) Time (ms)

Figure 2: Waveforms of target and prediction using the sawtooth
wave shape included in the ‘Analog-18’ dataset for each Backbone
layer variant. From left to right, the waveforms display the lower
and higher frequencies included in the dataset: 20 Hz (Eo) and
1318 Hz (Es), respectively.

tion, Figure [3]shows target versus predicted waveforms for two
square wave examples for the LSTM variant. The plots demon-
strate how the waveshape of the analog VCO undergoes signifi-
cant changes at various frequencies and how the model effectively
learns these variations. Table[]presents the training results for the

1.01
Q
5 0.5
2
= 0.01
[}
<E( —-0.51 — target
- —=—- prediction
-1.01 T T T T T
0 5 10 15 0.4 0.6 0.8
Time (ms) Time (ms)

Figure 3: Waveforms of target and prediction using the square
wave shape included in the ‘Analog-18’ dataset for LSTM Back-
bone layer variant. From left to right, the waveforms represent
41.20 Hz (E1) and 659.25 Hz (Es).

top-performing variants, RNN and LSTM, evaluated across dif-
ferent training data sizes: ‘Analog-15’, ‘Analog-16’, ‘Analog-17’,
and ‘Analog-18’. The results indicate that increasing the length of
the audio files generally improves performance, achieving the low-
est error rates on the ‘Analog-18’ dataset. Notably, while the RNN
Backbone layer outperforms the LSTM in scenarios with smaller
training data sizes, the LSTM models demonstrate superior perfor-
mance as the training data size increases.

The impact of the number of generated samples included in
the input buffer 7" is shown in Table E} As T increases, mod-
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Table 3: Performance metrics for each variant of the Backbone layer, reported separately for each of the six octaves included in the
‘Analog-18’ dataset, and related to models trained with triangle, square, sawtooth waveshapes separately. The lowest values for each
performance metric are highlighted in bold.

TCN RNN GRU LSTM

Dataset Oct NMSE FFT NMSE FFTE NMSE FFTE NMSE FFTE
‘Analog-18" | Fo—D; | 3.66-10°%F [ 0.83 | 6.15-10°% | 1.39 | 1.91-10°% | 054 | 1.89-10"% | 0.45
Triangle | By — D2 | 1.31-107% | 0.13 | 1.13-107° | 0.09 | 2.84-1077 | 0.05 | 9.37-107% | 0.05
Es—Ds | 1.72-107% | 0.15 | 1.10-107¢ | 0.10 | 1.23-107% | 0.10 | 4.85-10"7 | 0.06

Es—Dy | 3.34-107% | 0.17 | 3.98-107¢ | 0.20 | 3.84-107% | 0.20 | 3.03-107% | 0.16

Ei—Ds | 746-107% | 0.20 | 1.45-107° | 0.28 | 1.39-107° | 0.25 | 1.52-107° | 0.26

Es—Dg | 1.30-107* | 093 | 1.59-107* | 1.03 | 7.72-107° | 0.71 | 5.46-107° | 0.48

‘Analog-18° | Eo—D; | 1.20-107% | 085 | 6.16-10° | 0.74 [ 6.02-10°° | 0.76 | 6.75-10° | 0.82
Square Ei—D, | 822-107° | 098 | 882-107% | 050 | 1.16-107° | 0.61 | 6.29-107% | 0.49
FEs—Ds | 1.69-107% | 1.23 | 6.72-107° | 0.85 | 7.05-107° | 0.92 | 3.64-107° | 0.72

Es—Dy | 327-107° | 1.12 | 1.52-107% | 0.67 | 2.24-107* | 0.76 | 1.78-10* | 0.74

Es—Ds | 765-107° | 0.01 | 7.28-107° | 0.01 | 9.76-10"° | 0.01 | 1.02-10~% | 0.01

Es—Dg | 5.84-107° | 0.01 | 3.26-107° | 0.01 | 6.83-107° | 0.01 | 853-10"° | 0.01

‘Analog-18° | Eo —D; | 1.54-10"% | 1.19 | 1.60-10~7 | 1.19 | 1.06-10% | 1.04 | 9.97-107° | 1.00
Sawtooth | E1 — Dy | 2.71-107° | 0.74 | 2.36-107° | 0.74 | 1.81-107° | 0.68 | 1.80-107° | 0.53
Es—Ds | 7.03-107° | 095 | 4.19-107° | 0.65 | 3.85-107° | 0.64 | 4.28-107° | 0.74

Es—Dy | 1.44-107% | 0.22 | 3.39-107° | 045 | 4.76-10° | 0.41 | 4.25-107° | 0.33

Es—Ds | 412-107° | 061 | 1.49-10™° | 0.19 | 4.26-10"° | 0.15 | 1.36-107° | 0.51

Es—Dg | 429-107% | 0.01 | 484-107° | 0.01 | 1.85-107% | 0.01 | 1.86-10"% | 0.01

Table 4: Performance metrics for RNN and LSTM-based models
trained with the ‘Analog-18’ dataset utilizing examples with dif-
ferent lengths. The models are trained with triangle, square, and
sawtooth waveshapes separately. The training data size resulting
in the lowest metrics is highlighted in bold.

Table 5: Performance metrics for the RNN and LSTM-based mod-
els trained with the ‘Analog-18’ dataset when varying the size of
the buffer T. The models are trained with triangle, square, and
sawtooth waveshapes separately. The T sizes resulting in the low-
est metrics are highlighted in bold.

Length RNN LSTM RNN LSTM
Samples NMSE FFTE NMSE FFTE T Dataset NMSE FFTE NMSE FFTE
29,491 2.45-107% 1.09 | 9.33-107% 1.65 64 ‘Analog’ | 1.04-10=% | 0.62 | 7,74-10~° | 0.38
58,982 2.23.107* 0.77 1.42-1074 0.71 96 -18 9.82-107% | 0.52 | 7.07-107° 0.57
117,965 | 2.20-107* 0.88 1.32-107% 0.68 128 Triangle 8.40-107° 0.56 5.81-107° 0.41
235,929 | 4.82-107° | 0.47 | 4.80-107% | 0.46 256 3.94-107% | 0.22 | 3.29-10"° | 0.26
64 | ‘Analog’ | 1.68-10"% | 0.83 | 1.33-10=% | 0.77
96 -18 4.82-107° 0.47 4.80-107° 0.46
128 Square 7.49-1075 | 0.86 | 1.75-10~* | 0.75
els show improved accuracy as they can use a longer temporal 256 799.10-5 | 062 | 2.37-10-5 | 0.42
context to predict the next sample. This is particularly beneficial 64 “Analog’ 112.10-1% 0.82 1.69.10-4 1.01
for low frequencies, where a single period includes a larger num- 9 18 8.07-10-5 0.71 5.99 . 10—5 0.57
ber of samples. It is important to note that although the size of 128 | Sawtooth | 8.17.10-5° 0.70 4.06-10-° 0.47
the Compression layer’s input differs, the input to the recurrent 256 412-10-5 | 049 | 335.10-5 | 040

layers (utilized for the Backbone layer) consistently remains a 4-
dimensional vector. Figure [d] shows how increasing 7" enhances
the model’s ability to generate low frequencies with greater accu-
racy. In particular, only the model trained with 7" = 256 succeeds
in generating a triangle and square waveshape at 20 Hz from the
‘Analog-18’ dataset. This suggests that for the triangle and square
wave, it is sufficient to have T" approximately 10% of the number
of samples in the period of the lowest frequency to generate, which
is 20 Hz in this case. This also highlights the higher complexity
associated with triangle and square wave generation compared to
sawtooth. Indeed, accurate sawtooth generation requires setting 1’
to approximately 4% of the number of samples in the period of the
lowest frequency.

Table [6] provides insights into the impact of varying model
sizes on performance using the ‘Analog-18’ dataset. As expected,

increasing the number of units leads to improvements, especially
for the square and sawtooth datasets, which present more complex
challenges. Interestingly, increasing 7" leads to greater benefits to
model performance than increasing the number of units.

Table[7]displays the performance of the models predicting un-
seen frequencies, as the density frequency examples in the train-
ing sets vary. It is observed that the LSTM-based model performs
particularly well with synthetic sine waves, and generally better
than the RNN variants. ‘Synthetic-2’ dataset, including the smaller
number of frequency examples in the training set and only 50%
of frequency examples, poses the greatest challenges considering
both variants and wave shapes. On the other hand, the models
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Figure 4: Waveforms comparing target versus prediction for mod-
els trained with the ‘Analog-18’ dataset, related to triangle and
square waveshapes under variations of buffer size T': triangle with
T=128 (top), triangle with T=256 (mid-top), square with T=128
(mid-bottom) and square with T=256 (bottom). The waves refer to
the lower pitch Eo, having 20 Hz, and are generated by a model
using LSTM as the Backbone layer.

Table 6: Performance metrics of RNN and LSTM-based models
trained with the ‘Analog-18’ dataset under variations of the num-
ber of units u. The models have been trained with triangle, square,
and sawtooth waveshapes separately. The numbers of units result-
ing in the best metrics are highlighted in bold.

RNN LSTM
Dataset u NMSE FFTE NMSE FFTE
‘Analog’ | 16 | 8.92-10=5 | 048 | 7.57-107° | 0.48
-18 32 | 845-107° 0.45 7.87-107° 0.47

Triangle | 64 | 6.85-107% | 0.40 | 6.15-10"% | 0.32

‘Analog’ | 16 | 2.16-10—% 0.91 1.74-10—4 0.81
-18 32 | 7.37-1075 | 0.57 | 1.55-107* | 0.74
Square | 64 | 5.63-10"5 | 0.50 | 4.76-10"° | 0.45

‘Analog’ | 16 | 8.74-107> | 0.70 | 5.50-107° 0.55
-18 32 | 4.75-107°% | 047 4.60-10~° 0.46
Sawtooth | 64 | 4.39-10~% | 0.59 | 4.38-10°5 | 0.55

present comparable results to the other ‘Synthetic’ datasets.

Figure |§] illustrates the results for two frequency cases in-
cluded in the sines and sawtooth test sets, generated by the mod-
els trained with the ‘Synthetic-32’ dataset. The results indicate
that the sine waves are accurately produced in both cases, show-
ing strong alignment with the target. This suggests that the models
can learn in scenarios where there is a step size of 32 Hz between
frequency examples. However, the sawtooth wave poses a more
challenging case, as we generally observe that the predicted sig-
nal tends to misalign from the target after a few cycles. This may
occur because the target frequency is not accurately synthesized,
leading to cumulative misalignments during generation.

Figure [6] shows an example of a 500 ms square-wave sweep
from the ‘Analog-18’ dataset, generated by a LSTM-based model
with T" = 96, and 64 units. The sweep begins at 20 Hz and pro-
gresses to 500 Hz, with the frequency linearly increasing at each
iteration. The actual dataset waveforms of 20 Hz and 500 Hz are
also presented as a reference. Notably, this continuous frequency
variation does not introduce artifacts, as demonstrated by both the

Table 7: Performance metrics of RNN and LSTM-based mod-
els trained with the ‘Synthetic-XX’ (Synth-XX) sine and sawtooth
datasets. The lowest metrics are highlighted in bold.

RNN LSTM
Dataset NMSE FFTE NMSE FFTE
Synth-2 Sine | 4.82-10~° | 0.41 8.57-10=F 0.26
Synth-4 Sine | 5.05-107°% | 0.63 6.47 - 10~ 0.23
Synth-8 Sine | 4.85-107% | 1.46 | 5.35-107¢ | 0.21
Synth-16 Sine | 5.77-107° 1.83 6.24-10~6 0.22
Synt-32 Sine | 4.78 -10~% 1.40 5.61-10~6 0.22
Synth-2 Saw | 4.48-10-% | 1.78 | 3.83.10~% 1.75
Synth-4 Saw | 4.12-10% | 1.76 | 2.11-10~% | 1.36
Synth-8 Saw | 4.25-10"4 | 1.80 | 2.60-10"% | 1.56
Synth-16 Saw | 4.40-10=4 | 1.77 | 3.43-107* | 1.64
Synth-32 Saw | 4.24-10=* | 1.80 2.14 - 10~ 1.46

RNN LSTM
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Figure 5: Waveforms of target and prediction of the ‘Synthetic-2’
sines and sawtooth datasets for unseen frequencies. The plot refers
to the model using RNN (left) and LSTM (right) as the Backbone
layer trained with 50% of the dataset examples. The shown fre-
quencies are 101 Hz and 299 Hz.

visual representation in the figure and the audio examples provided
in the online companion page

The proposed model learns the target waveshape and repli-
cates any aliasing present in the recordings. Therefore, the qual-
ity of the analog antialiasing filter used during the recording of
the analog VCO and the digital antialiasing filter applied during
data downsampling significantly affect the model’s aliasing perfor-
mance. Frequency domain plots are available on the companion
online page, demonstrating that the model accurately reproduces
the frequency content of the target recordings without introducing
additional aliasing.

Lastly, Table[8]shows the outcomes of training the LSTM vari-
ant model, set up with 64 units and 7" = 256, with all waveshapes
in the analog dataset. The model uses the input conditioning pa-
rameter c to specify the waveshape to be generated, which also
enables it to morph between them. In this case, errors are slightly
higher due to the higher task’s complexity, but they are still close
to those from models trained with individual waveshapes. Figure[7]
shows generated examples of triangle, square, and sawtooth wave-

3https://riccardovib.github.io/NeuralOSC_pages/
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Figure 6: Waveforms of a generated 500 ms square-wave sweep
from the ‘Analog-18’ dataset. The sweep begins at 20 Hz and pro-
gresses to 500 Hz, with the frequency linearly increasing at each
iteration. Waveforms of the dataset recordings at 20 Hz and 500
Hz are shown at the bottom for reference.

shapes from the ‘Analog-18’, demonstrating the model’s ability to
adapt to different waveshape characteristics. The example is lim-
ited to 37 ms to better distinguish the waveshapes.

Table 8: Performance metrics for the LSTM variant model trained
on the full ‘Analog-18’ dataset. The model has 64 units and 256
as T. The losses are reported separately on all the wave shapes.

Dataset Waveshape (c) NMSE FFT
‘Analog-18’ Triangle (0) 4731077 ] 1.36
- Sawtooth (0.5) | 3.69-107* | 1.33

- Square (1) 2.97-107* | 0.86

3.1. Ablation Experiments

The Compression layer was introduced to decrease the number of
recurrent steps, thereby reducing the overall operations required to
generate each audio sample. Computation costs are approximately
reduced by a factor of T'/U., where T represents the number of
audio samples in the input buffer, used as a shift register, and U,
denotes the number of units in the compression layer. As sum-
marized in Table [J] the addition of the Compression layer also
improves modeling accuracy, indicated by a slight reduction in
NMSE loss and FFT metrics. However, this enhancement is not
consistently seen with RNN-based models. It’s important to note
that while the Compression layer reduces inference operations, it
also increases the number of trainable parameters in the model.

4. CONCLUSIONS

This paper investigated the use of artificial neural networks
(ANNSs) for emulating Voltage-Controlled Oscillator (VCO) com-
ponents in analog synthesizers. We gathered data from both real
and synthetic VCOs to train models capable of generating wave-
form shapes at any frequency. Our findings suggest that ANNs
have the potential to learn waveshape variations across frequen-
cies, thereby enhancing emulation accuracy beyond traditional

1.0 1<t 1.0
] i 0.8
3 o5
2 0.6
= 00
= Fo.4
g 1
< —05 / Lo.2
-lofp—==—r= T T . " " —t 0.0
0 5 10 15 20 25 30 35
Time (ms)

Figure 7: Waveforms of 37 m of generated signal morphing be-
tween triangle, sawtooth, and square waveshape. The c input pa-
rameter is varied linearly to condition the generation across wave-
shapes. The waveform is generated using the LSTM variant with
64 units and T = 256, which is trained with the ‘Analog-18’
dataset. The signal has a frequency of 164.81 Hz (E3).

methods. Utilizing black-box autoregressive architectures, we
successfully modeled various waveform types, including triangle,
square, and sawtooth waves. The models functioned with a shift
buffer, taking wave frequency and shape as inputs, demonstrating
a promising approach for advanced sound synthesis.

We evaluated various architectural configurations in differ-
ent modeling scenarios, varying on dataset size, input buffer size,
number of computational units, and density of training frequency
examples. Recurrent variants, especially LSTM, showed superior
performance. Extended durations of individual waveform exam-
ples proved beneficial during training, as did larger buffer sizes,
which enhance the network’s ability to emulate lower frequen-
cies. Overall, the models effectively emulate basic waveshapes, al-
though they encountered significantly greater difficulty with lower
frequency ranges. In addition, increasing the number of units can
further enhance performance, albeit at the cost of higher compu-
tational demands. LSTM variants also demonstrated efficacy in
predicting unseen frequencies, although the target frequency is not
always perfectly matched, leading, at times, to cumulative mis-
alignments over time. Ultimately, a single model, using the best
configuration identified in previous experiments, successfully em-
ulated all waveshapes by employing an additional input parameter
to morph between them.

While the architecture allows real-time synthesis without la-
tency, it demands a considerable number of floating-point oper-
ations (FLOPs). The LSTM variant with 64 units and a buffer
size of 96 requires 141, 312 FLOPs per sample. Smaller networks
show errors similar to larger ones, suggesting a smaller model
might suffice. Specifically, the LSTM variant with 32 units re-
quires 34, 816 FLOPs, and with 16 units, it needs 9,216 FLOPs.
Additionally, wave generation needs the buffer initialized with
samples from real recordings to provide context, although this is
only a fraction of the complete wave cycle.

Preliminary experiments with fully stateful architectures, pre-
viously used for emulating analog audio effects [14]], yielded un-
satisfactory results compared to the proposed models. Addition-
ally, deep state-space models [15]], when used in the backbone
layer, are constrained to track short temporal dependencies, re-
gardless of compression layer usage. Therefore, these models are
less suited to the current architecture, as they perform best in sce-
narios with particularly long temporal dependencies. In future re-
search, we aim to explore how SSM-based models can further en-
hance analog VCO modeling and investigate architectural varia-
tions that may lead to reduced computational complexity.
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Table 9: Performance metric variations with the introduction of the Compression Layer for models using recurrent-based architectures in
the Backbone layer. Negative numbers indicate a reduction in the associated loss, which signifies increased accuracy.
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RNN GRU LSTM
Dataset NMSE FFT NMSE FFT NMSE FFT
“Triangle Analog-18" | —4.57-10"° | —0.03 | —5.28-10"° | —0.10 | —2.37-10"° | —0.03
‘Sawtooth Analog-18° | 3.66-107* 0.61 | —2.37-107° | —0.06 | —6.16-107° | —0.21
‘Square Analog-18’ 2.29-107* 0.54 | —7.79-107°% | —0.09 | —1.14-107° | —0.01
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