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ABSTRACT

Modal synthesis methods are a long-standing approach for mod-
elling distributed musical systems. In some cases extensions are
possible in order to handle geometric nonlinearities. One such
case is the high-amplitude vibration of a string, where geomet-
ric nonlinear effects lead to perceptually important effects includ-
ing pitch glides and a dependence of brightness on striking am-
plitude. A modal decomposition leads to a coupled nonlinear sys-
tem of ordinary differential equations. Recent work in applied ma-
chine learning approaches (in particular neural ordinary differen-
tial equations) has been used to model lumped dynamic systems
such as electronic circuits automatically from data. In this work,
we examine how modal decomposition can be combined with neu-
ral ordinary differential equations for modelling distributed musi-
cal systems. The proposed model leverages the analytical solution
for linear vibration of system’s modes and employs a neural net-
work to account for nonlinear dynamic behaviour. Physical param-
eters of a system remain easily accessible after the training without
the need for a parameter encoder in the network architecture. As
an initial proof of concept, we generate synthetic data for a non-
linear transverse string and show that the model can be trained to
reproduce the nonlinear dynamics of the system. Sound examples
are presented.

1. INTRODUCTION

Research into physical modelling synthesis has a long history. Var-
ious simulation techniques have been employed, including finite-
difference time-domain methods [1], modal synthesis [2] and port-
Hamiltonian methods [3]]. These approaches all rely on the numer-
ical solution of a set of ordinary or partial differential equations
(ODEs/PDEs) that describe the dynamics of a system and are ac-
companied by initial and boundary conditions, and external forces
or input signals. In contrast, machine learning approaches gener-
ally construct musical systems automatically from data, often in
a black-box manner, and recently have gained popularity in audio
research, especially in virtual-analog modelling [4]. Some data-
driven approaches — such as neural ordinary differential equations
(NODE?s), in which a derivative of system’s state vector is param-
eterised by a neural network [S] — incorporate existing knowl-
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edge about the underlying system into their training [6]. As elec-
tronic circuits can generally be viewed as finite-dimensional sys-
tems, they are well-modelled using NODEs [7]].

However, modelling of distributed musical systems such as
strings, plates, etc. using machine learning approaches has seen
limited attention in the literature. Parker et al. [8] have presented
recurrent neural networks for physical modelling based on a Fourier
neural operator [9]. These recurrent structures are trained from
data spanning a few initial time steps of around 2 ms. Extrapo-
lation in time is tested over intervals spanning up to 10 times that
seen during training and the best performing model shows degra-
dation towards the end of the simulation. Diaz et al. [[10] have in-
troduced a Koopman-based model that addresses some discrepan-
cies compared with recurrent architectures such as solution accu-
racy but extrapolation in time remains a challenge. Lee et al. [[11]
have employed differentiable digital signal processing techniques
for the simulation of a nonlinear string. Amplitudes and frequen-
cies of oscillators, corresponding to modes of a string, are adjusted
using multilayer perceptron (MLP) blocks, which are trained to
capture nonlinear effects.

One common drawback of these approaches is that initial con-
ditions and physical parameters of a system, affecting pitch, timbre
and other sonic characteristics, can not be modified after training,
or the network architecture requires a parameter encoder to con-
dition the solution, leading to more trainable parameters and the
requirement of a larger dataset containing ground truth data for
desired configurations of a system. In addition, system excitation
follows from different choices of initial conditions which does not
correspond to a realistic playing scenario, where external forcing
terms are always present [1]]. In this work, we aim to more tightly
integrate the physics of a distributed system into a machine learn-
ing framework. In particular, we use modal decomposition to con-
struct a system of finite dimension and separate the linear and non-
linear parts of the problem. Then, we replace only a dimension-
less memoryless nonlinearity (that describes coupling between the
modes) with a neural network and train NODEs to obtain the re-
sulting model. Consequently, physical parameters remain easily
accessible and the model generalises to physical parameters, sam-
pling rates and time scales not seen during training. Compared
to a fully physical model, we show that the proposed approach is
more computationally efficient for the case of nonlinear transverse
string vibration.

The paper is organised as follows. A simple model of nonlin-
ear transverse string vibration is described in Section |2} Section
derives modal equations for a string, which are discretised in time
for computer simulation in Section[d] Section [5] outlines the pro-
posed learning algorithm, which is evaluated in Section [§] across
several case studies. Sound examples are available on the accom-
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2. NONLINEAR TRANSVERSE STRING VIBRATION

The general equation of motion describing a transverse vibration
of a nonlinear string in a single polarisation is:

Lu=F+Fe. 1)

Here u = u(z,t): [0, L] x R — R denotes the transverse dis-
placement of a string of length L and depends on spatial coordi-
nate x in m and time ¢ in sec. Initial conditions are assumed to be
zero. The string is assumed to be simply supported at both ends,
implying the following boundary conditions:

u(0,t) = 2u(0,t) = u(L,t) = dou(L,t) =0, VteRT.

Output is assumed to be drawn directly from the string displace-
ment at position z, as w(t) = u(xo, t).

2.1. Linear Vibration

The linear part of the string vibration is encapsulated in the opera-
tor £, defined as:

L = pAd} — T2 + EIO: + 200pA0; — 201pA802,  (2)

where 0; and O, represent partial derivatives with respect to x
and t, respectively. Physical parameters that appear in (2) are:
the material density p in kg-m™3; the string cross-sectional area
A = 7r? in m? for a string of radius r; the tension 7" in N;
Young’s modulus £ in N-m~2; and moment of inertia I = iﬂ?“‘l
in m*. Frequency-independent and dependent loss is characterised
by parameters og > 0 and o1 > 0, respectively. See [1] for more
on this term in the context of linear string vibration.

2.2. Nonlinearity

Nonlinear dynamics of the string are described in a force density
F. A general model for F is given by Morse and Ingard [12] and
includes both longitudinal and transverse motion of a string in two
polarisations. In this work we neglect the longitudinal motion and
one of the two polarisations, leading to the following force density
after taking a Taylor series expansion on the force potential [13]:

EA-T

}'(m,t):az( 5 53), £ £ 9,u. 3)

For the force density (3) to be conservative we assume EA > T,
which is true in the case of musical strings. Compared to the
Kirchhoff-Carrier model [14} [15], which adequately reproduces
only the pitch glide effect, model (3) is capable of capturing other
perceptually important effects such as phantom partials [1].

2.3. Plucking Excitation

The string is excited by a pointwise external force F., which can
be modelled as:

fe(l‘,t) = 6($ - xe)fe(t)a

Ihttps://victorzheleznov.github.io/dafx25

where 0(x — x.) is the Dirac delta function at the excitation posi-
tion x.. Function f.(t) resembles a pluck of a string and is of the
following form [16]:

0, otherwise

fo(t) = {éfamp [1—cos(F5)], telo,Te] @

Here famp is the excitation amplitude in N and 7 is the excitation
duration in sec. The excitation starting time is assumed to be zero.

2.4. Equation Scaling

In view of using the string model (I) for dataset generation, it is
useful to reduce the number of physical parameters to the smallest
possible set. Firstly, we employ spatial scaling by introducing a
normalised position variable 2’ = £ € [0, 1]:

OFu = 20k u — K202 u — 2000u + 2010,0% u +

9 1 FEA 3 1 ’ ’
920w (5 (50 —1) @) 4 o’ = al) o)

1 T 1 EI / o
Where’y:f,/ﬁ,ﬁzﬁ,/ﬂandalzfﬁ.

Secondly, we scale the displacement by ' = w-uo and obtain:

02 = 0% — K294 — 20000 + 201002 +
+7°00 (€%) +8(" =)L), )

where up = +1/3(Z2 — 1), ¢ £ 9,4 and fi(t) = S fe(t).

Thus, we have reduced a set of physical parameters {L, p, A,
T,E,I,00,01} to a set of only four parameters {v, x, 00, 01 }.
In the following sections we omit the prime while referring to the
scaled string model (3).

3. MODAL DECOMPOSITION

The solution to equation (3) can be decomposed into a set of modes,
yielding a finite-dimensional system when truncated to finite order
M. The transverse displacement u is rewritten as a superposition
of modal displacements q(t) = [q1 (), ..., qm (t)]":

u(@,t) = Y Pm(@)gm(t) = @7 (2)q(t). (6)

=1

Here modal shapes ®,,(z) = v/2sin(mnz), m = 1,..., M
correspond to the solution of the eigenvalue problem for a stiff
string under simply supported boundary conditions [1].

Substituting () into (3), left-multiplying by ® and taking an
L? inner product over the interval [0, 1], we obtain the following
second-order system of ODEs:

G+28G+Q%°q =72 F(q) + ®(x) fo(t), ©)

where S and €2 are M x M diagonal matrices, defined using modal
wavenumbers 3, = mmw, m=1,..., M as:

Qinm = V2 B2 + k2B

2
Sm,m =00 + Ulﬁm,,
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3.1. Nonlinearity

To obtain a closed-form expression for dimensionless nonlinearity
f(@): RM — RM we firstly rewrite the partial derivative ¢ in the
modal form:

M M
§=0y ( Z ‘1%'1(11‘1) =21 Z i1co8(i17mx) giy . (8)

i1=1 ip=1

=ciy

Raising (8) to the power of 3 and taking a partial derivative with
respect to x, we get:

) M M M
8;,3 (63) = *2\/571’4 Z Z Z (i%i2i3811612ci3 —+

i1=14ip=114ig=1

.2, L. L2
+ 119513Ci; Sig Cig + 111283Ci, Ciy 31‘3)(]1'1(]1‘2(]1'3, )

where s;, = sin(ix7mx), k = 1,2,3. Multiplying @) by ®,, and
taking an L? inner product over the interval [0, 1], we find:

1 M M M
Fla) = [@n0u(€) do == 30 37 30 AT it
2 i1=1ig—=1iz—1
(10)
where:
atr o, ; ;
AT inia = T [ BT + BED 4+ BEL,

BE™ =ik [ Skgiimts — Okri—(mag) +
+ Okti,m—j — 6k+i,7(m7j) +
+ 0k—i,m+j — Ok—i,—(m+s) +
+ Ok—iym—j — Ok—i,—(m—j)) - (11)

Here 0;,; denotes the Kronecker delta function. Thus, the dimen-
sionless nonlinearity f(q) is defined by a sparse tensor A7} ;. ;.
@ which is symmetric with respect to lower indices %1, 2, ¢3.
Depending on the derivation, one could obtain other equivalent

closed-form expressions for the tensor A7 ;, ;..

4. TIME DISCRETISATION

For this initial study, we are using the Stormer-Verlet method [[17]
as it is an explicit and efficient numerical method, although does
not guarantee stability. We choose a time step k in sec, yielding
a sampling rate f; = % and define a vector time series ¢" =
g(nk), n=0,..., N — 1 on a uniform time grid.

To arrive at a one-step update, we rewrite as a first-order
system by introducing modal velocities p = [p1(t), . .., pa (£)]T:

p=—-2Sp— Qq+7’f(q) + ®(xe) fe(t)

Using centred approximation for time derivatives, we get:

n+1 n 1

q 9 _ nt3

% =p 2
pn+% n—1

where p’”’% is an interleaved sequence of modal velocities and
fI = fe(nk).

Following [17], this numerical scheme can be written in an
explicit form to produce an update (¢", p™) — (¢!, p™ ™)

l n n n n n
p"tz=p +§[—25p —Q%q" + 2 f(q") + ®(x.) C]
qn+1 — qn +kpn+%
prt = (T+kS) " [p"T2 +

+E(- g 492 @) + Bl )

(13)

Since matrix I+£S is diagonal, its inverse can be easily computed.
Using (@), we obtain an audio output as w™ = &7 (z,)q™.

5. LEARNING ALGORITHM

5.1. Neural Ordinary Differential Equations (NODEs)

NODEs can be defined through the following first-order system:

dy
7 =go(y, 1),

y(0) = yo. (14)
Here y = y(t): R™ — R is an unknown function of time ¢,
yo € R¥ is an initial condition and go (y, t): R xRT — R¥ isa
neural network where 6 denotes the set of all learnable parameters
and K denotes the state dimension. Generally, a simple neural
architecture such as an MLP or convolutional network is chosen
for go(y,t). Chen et al. [3] have showed that the system (I4) in
combination with a numerical solver, labelled as ODE-Net, can be
trained from data to reproduce dynamics of a target system.

Assume a target trajectory 7 = {yo, yl .., yN’l} sampled
on a uniform time grid with a step k. Given a predicted trajectory
7 = {yo,7",...,9" '} by a numerical solution to the initial
value problem @, i.e., a forward pass of the ODE-Net, we can
construct an objective function 7 (@) such as a mean squared error
(MSE):

_ 1 s ~n n |2
TO) = o5 215" = "ll3. (15)
n=0

where ||-||,, is the Euclidean norm. We search for a local mini-
mum of 7 () using gradient-based optimisation techniques where
the gradient V¢ J can be computed using the backpropagation al-
gorithm [18]] through internal operations of a numerical solver or
the adjoint sensitivity method [19, 5]. In most cases the objective
function 7 (6) will be averaged for a finite set of target trajectories
before each optimisation step.

5.2. Extension for Physical Modelling Synthesis

In the case of modal synthesis, there is a known ODE structure
(T2) which can serve an inductive bias for a NODEs framework
[20]. In particular, we parametrise only a dimensionless memory-
less nonlinear function fy(q): R — R with a neural network,
yielding a system of physically-informed NODEs:

[Z} B [4012 *;S} [ﬂ i [fe(()q)} * {cb((;e)] Je(t)
—_— —_— —

Linear vibration Excitation

(16)

Neural network
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As mentioned earlier, initial conditions for a state vector y* =
[qT7 pT] are assumed to be zero. To compute a forward pass of
the physically-informed ODE-Net, we:

> set S,Q,7, ®(x.) in (T6) using physical parameters of a
target solution;

» precompute fI' = fe(nk), n = 0,...,N — 1 using (@)
and excitation parameters famp, 7 of a target solution;

» use the Stérmer-Verlet method for (T6) as in the case of a
regular system (T3) to produce a predicted trajectory 7.

The formulation (T6) has strong implications. First, the exact
expression for linear vibration exploits the periodic, harmonic and
lossy nature of a musical system. Thus, we aid optimisation of
the network by constraining the space of possible solutions and
improve interpretability of the model.

Second, the neural network fo(q) is memoryless and dimen-
sionless, thus does not depend on physical parameters of a sys-
tem and external excitation. Theoretically, these parameters can
be changed after the training as long as range of modal displace-
ments g stays the same as in a training dataset to simulate other
configurations of a system.

Finally, we are able to use numerical methods developed di-
rectly for second-order systems (e.g., the Stormer-Verlet method)
that are commonly used in musical acoustics. In the linear case,
some such methods allow for exact discretisation of the harmonic
oscillator equation [1]].

6. EVALUATION

The physically-informed ODE-Net described in Section[5]has been
implemented in the PyTorch framework [21]] and evaluated for two
case studies: nonlinear oscillator (Section[6.1) and nonlinear trans-
verse string (Section [6.2). The training was conducted on cloud
servers equipped with NVIDIA GeForce RTX 2080 Ti GPUs. The
source code used for dataset generation and training is available in
the accompanying GitHub repositor

For the parametrisation of f¢(q) we use an MLP with a lin-
ear output layer and a varying number of hidden layers of 100
units. Leaky rectified linear units (Leaky ReLUs) are used as ac-
tivation functions in hidden layers and Kaiming initialisation [22]
is used for the initial weights of the network. It was noted that sat-
urating activation functions such as the hyperbolic tangent func-
tion might cause a vanishing gradient problem when modal dis-
placements g span a wide range. Moreover, we are interested in
reducing the computational cost of fy(g) compared to the target
nonlinear function f(q) (I0), making rectified linear units a com-
pelling choice. Compared to regular ReLUs, Leaky ReLUs pro-
vided faster convergence in optimisation in our experiments.

The training loss is the MSE taken over the whole state vector
(T3), i.e., including both modal displacements g and modal veloc-
ities p. Backpropagation is performed using internal operations
of the numerical solver @), i.e., the "discretise-then-optimise"
method, which is generally a preferred approach due to its gradi-
ent accuracy, speed and straightforward implementation [20]. The
Adam optimiser [23] is used with default parameters. The dataset
is divided into two subsets: 80% is used for training and 20% is
used for validation. The training is performed for 5000 epochs.
The resulting model is chosen based upon the lowest loss obtained
on the validation subset.

Zhttps://github.com/victorzheleznov/dafx25

For training we use a variation of the teacher forcing tech-
nique [24] by splitting up a target trajectory into 1 ms segments
and providing true initial conditions for each segment to the ODE-
Net. Since the numerical method (I3) is given as a one step update
we have access to both displacement and velocity of the target nu-
merical solution at each time step, and thus initial conditions for
each segment. In addition, the excitation function (@) is shifted in
time to reflect a new starting point of integration. The main reason
for using this technique is to speed up training as the number of
integration steps in the numerical solver is significantly reduced.
These integration steps can not be parallelised in time. More-
over, the likelihood of vanishing and exploding gradient problems
during optimisation is also reduced by this technique as we avoid
backpropagation on long time series [20].

6.1. Nonlinear Oscillator

Up to this point, discussion has been centred around the nonlinear
transverse string model. To illustrate the generality of the proposed
approach, consider a simple nonlinear oscillator of the following
form:

i+wiqg=""f(q) + fe(t), (17)

where wo = 400 and v = 110.

‘We generate two datasets consisting of 60 one-second trajecto-
ries at 44.1 kHz using exactly the same set of randomly-generated
external excitations. The first dataset is created using the cubic
nonlinearity f(¢) = —¢* and the other using the hyperbolic sine
nonlinearity f(¢) = — sinh(g). We use an MLP with two hidden
layers of 100 units to parametrise fo(q) to ensure that the network
has enough capacity to learn the underlying nonlinearities.

This lumped case is especially useful for analysis as we are
able to easily visualise the learned nonlinear functions. As seen in
fig.[T] the network is capable of reproducing both the cubic and the
hyperbolic sine nonlinearities and can distinguish between them
from data. Ranges of displacement for both cases correspond to
minimum and maximum values in the datasets.

300 F— T T T T T =

—— Cubic -

i -~~- Predicted cubic |

200 - J

r sinh 1
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& ]

= 4

5 ]
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= 100 F -

~200 | ]
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Figure 1: Target and predicted nonlinear functions for the oscilla-

tor (I7).
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6.2. Nonlinear Transverse String

For the case of nonlinear transverse string, which is described by
the multi-dimensional system (7), we need to choose the number
of modes we will use in simulations. In this work we have settled
on 100 modes. Taking into account the effect of stiffness, this
covers most of the audible range for the chosen string parameters
— up to 17 kHz for the lowest considered fundamental frequency
at around 60 Hz. Simulation of this wide range of frequencies
requires oversampling by two for standard sampling rates such as
44.1 kHz and 48 kHz to avoid instability of the Stormer-Verlet
method and aliasing due to the nonlinear effects for high amplitude
excitations.

6.2.1. Datasets

Simulation parameters used for the generation of two datasets —
one for training and validation and the other for testing — are out-
lined in table (I} where Tiim corresponds to the duration of the
simulation. Each dataset consists of 60 string trajectories, which
include both displacement and velocity information for each mode.
For training and validation, only one set of physical parameters is
chosen corresponding to a 61.72 Hz string. This string is excited
by randomly-generated excitation functions (@) at randomised ex-
citation positions . using a uniform distribution for the specified
parameter ranges. For testing, string parameters vy and « are also
randomly generated to produce a range of fundamental frequen-
cies from around 65 Hz to 123 Hz. The simulation duration is in-
creased to account for a longer decay time due to a smaller damp-
ing parameter o¢. In addition, the sampling rate is increased from
88.2 kHz to 96 kHz. Even though the ranges of the excitation pa-
rameters are the same for the two datasets, excitation functions are
generated independently. For both datasets, audio output is drawn
from randomised positions z, along a string for each trajectory.

These parameters are motivated by two considerations. First,
we want to test generalisation of the model to physical parameters,
sampling rates and time scales not seen during training. In view of
other machine learning approaches, this flexibility and controlla-
bility of the physically-informed ODE-Net can be considered as its
main advantage. Second, strings with low fundamental frequen-
cies are chosen so that the nonlinear effect is more prominent in
simulations [[1]. Since the network architecture is designed to learn
the residual between the linear and nonlinear solutions, the train-
ing and validation dataset needs to reflect a significant difference
between them.

6.2.2. Results

For training we use an MLP with five hidden layers of 100 units
to parametrise fo(q). Although no extensive research was con-
ducted on the optimal size of the network with regards to simula-
tion accuracy and computational cost, this structure provided the
best empirical results when training MLPs with varying number of
hidden layers. Further optimisation beyond 5000 epochs did not
provide significant reduction in the validation loss, suggesting that
the model has converged to a local minimum.

For evaluation, we are using the relative MSE for displacement
trajectory ¢" and audio output w™:

n| 2
> lld" —q"l;
> el

Sl —w"?

>l ®

Table 1: Simulation parameters used for dataset generation.

Parameter Training and Test
Validation
fs 88.2 kHz 96 kHz
Tsim 2 sec 3 sec
Te [0.5,1.5] ms | [0.5,1.5] ms
123.4 [130, 246]
K 1.01 [1.01,1.1]
oo 3 2
o1 2 x 1074 2 x 1074
Te [0.1,0.9] [0.1,0.9]
To [0.1,0.9] [0.1,0.9]
famp [2,3] x 10* [2,3] x 10*

where ¢" and w™ are predictions given by the physically-informed
ODE-Net. These metrics are chosen as the audio output of sim-
ulation is directly dependent on the displacement trajectory of a
string.

Metrics for the training and validation dataset and the test
dataset are provided in table[2] Metrics are evaluated for the initial
100 ms and for the full duration of simulation, i.e., 2 or 3 sec, re-
spectively. As can be seen, metrics for the test dataset remain on
the same order of magnitude compared to the training and valida-
tion dataset, especially for the initial 100 ms. This suggests that
the performance of the trained physically-informed ODE-Net does
not significantly degrade for unseen simulation parameters.

Table 2: Metrics for the nonlinear transverse string datasets.

Metric TrViillil:'il;fide Test

’ Evaluated for initial 100 ms ‘
Rel. MSE for displacement | 3.91 x 1072 | 5.07 x 1073
Rel. MSE for output 3.66 x 1072 | 5.16 x 1073

’ Evaluated for full duration ‘
Rel. MSE for displacement | 3.64 x 1072 | 6.68 x 1072
Rel. MSE for output 3.54 x 1072 | 7.00 x 1072

To illustrate a specific example, we select a trajectory from the
test dataset with the largest relative MSE for audio output consid-
ering the full simulation duration. This corresponds to a 77.72 Hz
string. Fig. [2]shows the displacement trajectory of the selected test
string for the initial 100 ms. As can be seen, the predicted tra-
jectory maintains the structure of target solution but starts to lag
behind with time. This is to be expected, as any difference be-
tween the approximated and the underlying nonlinearity will be
integrated over time by a numerical solver, thus accumulating the
error. This is also confirmed by the metrics in table 2] which rise
when evaluated for the full duration of simulation compared to the
initial 100 ms. Examining the output waveform in fig. [3} we see
that initially the predicted waveform closely follows the target so-
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lution, including high-frequency partials of higher modes. Moving
forward in time, the predicted waveform still resembles the target
solution much closer compared to the linear solution. Looking
at displacements for individual modes in fig. El we also see that
initially the predicted displacements follow the target solution. It
should be noted that as vibration amplitude decreases over time
due to loss in the system the nonlinear effects become less promi-
nent [1]], thus the initial response of the model to an external ex-
citation is significantly more important for capturing the nonlinear
behaviour.

Target Predicted  Rel. Abs. Error
0.25
0.20
é, 0.15
[5)
£
=
0.10
0.05
0.00
0.0 0.5 0.0 0.5 0.0 0.5
Position Position Position

Figure 2: Displacement trajectory for the selected test string. On
the right, the relative absolute error between the target and pre-
dicted trajectories is shown, normalised by the maximum absolute
value of target trajectory.

We can examine the model further by comparing it to the lin-
ear solution. Fig.[3]shows MSE for the initial 100 ms of the linear
and predicted trajectories compared to the target solution individu-
ally for each mode, evaluated over the whole test dataset. It can be
clearly seen that the predicted trajectories capture displacements
and velocities up to around 40th mode much more accurately com-
pared to the linear solution. Since absolute values of MSE — the
objective function of optimisation — are much lower for higher
modes, the network seems to struggle to reproduce them. In a case
by case examination of modes (e.g., the 40th mode in fig. [, it was
noted that the network is capable of accurately capturing a first few
ms of the target solution. Afterwards, the main cause for the error
of predicted trajectories becomes incorrectly estimated amplitude
rather than instantaneous frequency. As can be seen on the out-
put spectrogram for the selected test string (fig. |§|), for which the
40th mode corresponds to around 4 kHz, the pitch glide effect is
reproduced for higher modes in line with the target solution.

Considering the computational cost in this particular exam-
ple, computation of fy(q) requires far fewer floating point opera-
tions compared to the underlying nonlinearity f(g) (I0). For 100
modes, the tensor A7} ;, ;. (TT) consists of Na = 2597200 non-
zero elements when accounted for the symmetries. Thus, it will
require O (N 4) floating point operations to compute f(q). On the
other hand, fy(q) consists of five hidden layers of 100 units with
Leaky ReLUs and a linear output layer. Computation of fo(q)
takes 121000 summations and multiplications combined when us-

ing a naive matrix multiplication algorithm. This suggests that the
presented hybrid approach with a relatively small neural network
might be able to sufficiently capture the behaviour of a complex
physical model, while reducing the computational cost compared
to the regular modal synthesis method. As of now, there were no
formal listening tests conducted to assess a trade-off in perceptual
accuracy, but readers are encouraged to listen to audio examples
presented on the accompanying pag

7. CONCLUSIONS

A method for modelling distributed musical systems in a modal
form using neural ordinary differential equations has been con-
sidered here. The proposed approach separates the problem into
the linear and nonlinear parts, trying to combine complementary
strengths of modal synthesis and machine learning. The analyti-
cal solution for linear vibration of modes allows the isolation of
physical system parameters and external excitation from the neu-
ral network, which learns a dimensionless and memoryless non-
linear coupling between the modes. It has been shown that such
structure can be used for simulation of a system with physical pa-
rameters unseen during training without significant degradation in
accuracy of the resulting solution. In addition, the use of a neural
network allows for an efficient representation of a complex nonlin-
ear function for the non-trivial case study of nonlinear transverse
string vibration.

This paper leaves many avenues and unanswered questions for
further work, several of which will be explored in the near future.
Currently, the model uses both displacement and velocity informa-
tion of each mode for learning. However, as modal displacements
and velocities are inherently connected in a system of ordinary
differential equations, it should be possible for the model to learn
using just the displacement information or one-dimensional audio
output taken at randomised positions along the string. This would
simplify a comparison of the proposed approach to other machine
learning methods [8[10L[11]]. For such a comparison, external forc-
ing terms should be omitted.

The Stormer-Verlet method used for simulation here is
an efficient numerical method that allows for an explicit update
equation. Nevertheless, even for strings with low fundamental fre-
quencies, it requires oversampling to run in a stable manner. An
extension to the scalar auxiliary variable technique [25} 26] seems
natural as it is the only numerical method known to the authors
which is not only explicit but both conditionally stable and gen-
eral, i.e., can be applied to different nonlinearities using the same
discretisation process.

Further research is required into potential computational sav-
ings to be had with a neural network compared to the underly-
ing nonlinearity, as real-time capability of the presented model re-
mains unexplored. There should be a crossing point in terms of
number of modes and complexity of the network where the net-
work becomes more efficient than the analytical expression. With
these computational savings, a trade-off in perceptual accuracy of
the resulting sound should be studied in formal listening tests.

Finally, leaving the realm of computer simulation, the pre-
sented model has a potential for identification of nonlinear acous-
tic systems by learning from real-world data. Bridging the gap
between the theory and what is observed in practice using such
hybrid approaches has already been suggested in other fields [20].

3https://victorzheleznov.github.io/dafx25
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Figure 6: Output spectrogram for the selected test string at normalised position x, equal to 0.87.

Considering musical acoustics, there are cases such as the bowed

string where the underlying friction characteristic between the string

and
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the bow is yet to be fully understood [27].
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