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ABSTRACT

This work focuses on developing an artistic tool that performs an
unsupervised mapping between text and sound, converting an in-
put text string into a series of sounds from a given sound corpus.
With the use of a pre-trained sound embedding model and a sepa-
rate, pre-trained text embedding model, the goal is to find a map-
ping between the two feature spaces. Our approach is unsuper-
vised which allows any sound corpus to be used with the system.
The tool performs the task of text-to-sound retrieval, creating a
soundfile in which each word in the text input is mapped to a sin-
gle sound in the corpus, and the resulting sounds are concatenated
to play sequentially. We experiment with three different mapping
methods, and perform quantitative and qualitative evaluations on
the outputs. Our results demonstrate the potential of unsupervised
methods for creative applications in text-to-sound mapping.

1. INTRODUCTION

Natural language processing (NLP) techniques, such as word2Vec
and RoBERTa, have demonstrated the ability to capture seman-
tic relationships between words [1, 2]. Similarly, deep learning
models for audio analysis have been used to extract meaningful
sound representations [3, 4]. However, aligning these two em-
bedding spaces within a unified framework remains an open chal-
lenge. This research explores unsupervised learning techniques to
address this issue, utilizing their flexibility to bypass the need for
labeled audio data, which can be scarce or vulnerable to subjec-
tivity in labeling [5]. By doing so, this work aims to provide a
novel computational tool for artistic expression and sound-based
interpretation of textual input.

In this system, the user provides a sound corpus along with
a text input and the output of the system is a sound file in which
each input word has been associated with one sound from the cor-
pus. The collected sounds then play in the order of the words in
the input text. The generated sound should not only reflect the con-
nections between words but also align with the characteristics of
the chosen sound dataset. Rather than establishing direct semantic
correspondences between individual words and sounds, the focus
is on preserving relational structures and ensuring that the rela-
tionships between words are mirrored in the relationships between
their corresponding sounds.

Consider an input text that contains the words “red” and
“blue.” Our goal is not that the word red maps to a sound that is
somehow “red”, but that the relationship between the “red” sound
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and the “blue” sound reflects the relationship between the semantic
meaning of the two words. As two words that belong to the same
category, the resulting sounds should also come from the same cat-
egory or cluster of sounds. However since the colors red and blue
are complementary colors that fall on opposite sides of the color
wheel, the two sounds should be distinct in some perceptual or
musical feature. A theoretical relation between the sounds could
be that they are samples from the same instrument but are differ-
ent in pitch, exemplifying the similarity in semantic category but
difference in characteristic.

The choice of unsupervised methods is crucial to this work for
multiple reasons. First, supervised audio and music tasks can be
problematic due to the subjectivity of labeled data; what one per-
son considers a "harsh" sound may be "pleasant" to another’s ears
[6]. This subjectivity can be especially present across different cul-
tures and musical practices and is compounded when emotionally
valenced labels are used [7]. Similarly, genre tagging for music
can fall prey to the same issue as many musics fall across multi-
ple genres or evade genre labels altogether [8]. Finally, the use of
unlabeled audio data allows a user to provide any type of sound
corpus without restraint on the type or variety of sounds.

In summary, our goal is to design a creative tool that:
1. Maps a sound corpus and a text input into distinct embed-

ding spaces using pre-trained models
2. Creates an unsupervised mapping between the two embed-

ding spaces
3. Generates an output sound that is a result of concatenating

the mapped sound from each word in the text input
The structure of the paper is as follows: we provide an

overview of the state-of-the-art in sound and text embedding mod-
els and alignment techniques in Section 2. In Section 3 we present
our system with three mapping methods and three evaluation met-
rics. We explain our experimental setup and provide our results
in Section 4, which shows that the simplest mapping method per-
forms the best quantitatively. In Section 5 we comment on the out-
comes of our experiments and emphasize the importance of quali-
tative evaluation for artistic tools. Finally, we conclude and present
future avenues to expand the work in Section 6.

Our code is available at: https://github.com/
dzluke/DAFX2025. You can listen to a selection of generated
sounds at the following website: https://dzluke.github.
io/DAFX2025/.

2. RELATED WORK

2.1. Sound Embeddings

Sound embedding models convert raw audio signals into fixed-
dimensional vector representations, enabling downstream analysis
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and processing of sound data for a variety of tasks. These models
can be broadly categorized into speech-focused models, general
audio models, and music-specific models. Speech models such
as HuBERT specialize in learning linguistic representations from
speech signals, making them effective for tasks like automatic
speech recognition [9]. General audio models like ESResNeXt
capture broad sound characteristics and are widely used in audio
classification and retrieval [10]. Music-oriented models, including
MuQ, EnCodec, and MERT, are designed to encode musical struc-
tures and enable applications such as music tagging, generation,
and retrieval.

Speech embedding models have seen significant advance-
ments, particularly with self-supervised learning techniques. Hu-
BERT (Hidden-Unit BERT) learns representations directly from
raw waveforms by predicting masked speech units derived from
an offline clustering process [9]. This allows it to capture both
phonetic and linguistic features that improve speech recognition
and spoken language processing. While highly effective in speech-
related tasks, such models are not designed to capture the broader
range of non-verbal audio characteristics required for general
sound understanding, nor are they suited for musical tasks.

General audio models such as ESResNeXt focus on learning
embeddings from a wider variety of sounds, including environ-
mental noise, musical tones, and human speech. ESResNeXt,
a convolutional neural network-based model, is trained on large-
scale datasets making it well-suited for sound event classification
and multimodal retrieval [10].

More appropriate to our task, music embedding models are
tailored to capture melodic, harmonic, and rhythmic structures.
MuQ, which utilizes Mel Residual Vector Quantization, is de-
signed for tasks like music tagging and instrument classification by
learning compact yet expressive music representations [11]. En-
Codec, a neural audio codec, compresses and reconstructs high-
fidelity audio signals using an encoder-decoder structure with
residual vector quantization, producing embeddings that preserve
fine-grained musical details [12]. MERT (Music undERstanding
model with large-scale self-supervised Training) leverages large-
scale self-supervised learning to capture the pitched and tonal
characteristics of music, making it particularly effective for music
classification and understanding [13]. Unlike speech and general
audio models, music embeddings must capture complex temporal
structures and timbral variations, making them uniquely suited for
applications in composition, generation, and audio synthesis.

2.2. Text Embeddings

Text embedding models such as word2vec, fastText, GloVe, BERT,
and T5 have significantly improved how machines represent and
process language by encoding words and sentences into high di-
mensional feature spaces [1, 14, 15, 16, 17] . These models can
perform a wide range of tasks including semantic similarity anal-
ysis, text classification, machine translation, and information re-
trieval. Static embeddings like Word2Vec and GloVe capture gen-
eral word relationships based on co-occurrence patterns, while
contextual models like BERT and T5 generate dynamic represen-
tations that account for the surrounding context.

Static embeddings, such as Word2Vec, GloVe, and FastText,
assign a fixed vector representation to each word regardless of its
context in a sentence. These models capture general semantic re-
lationships between words based on large-scale co-occurrence pat-
terns in text corpora. However, they cannot differentiate between

words with multiple meanings, as the same embedding is used in
all contexts.

Contextual embeddings, such as RoBERTa and T5, generate
word representations that depend on the surrounding context in
which the word appears; therefore the same word may have dif-
ferent embeddings depending on where it appears in a sentence.
These models leverage deep neural networks to dynamically ad-
just word embeddings based on sentence structure and meaning.
This allows them to capture nuanced relationships and word de-
pendencies, making them more suitable for complex language un-
derstanding tasks. RoBERTa is a transformer trained with self-
supervision on unlabeled text data [2]. It uses masking during
training, meaning it learns to predict masked words in a given in-
put sequence, and in that way learns word representations that can
be used for a variety of downstream tasks.

2.3. Multi-modal Embeddings

Our task is essentially text-to-sound retrieval, which is a specific
instance of the task of cross-modal retrieval. Various multi-modal
models that establish a shared feature space for both audio and text
exist, allowing for either modality to be input to the space.

CLAP (Contrastive Language-Audio Pretraining) employs a
contrastive learning framework to align audio and text representa-
tions [18]. It uses a SWINTransformer to extract audio features
from log-Mel spectrograms and a RoBERTa model for text fea-
tures, projecting both into a common latent space. CLAP can
be used for downsteam musical tasks, such as applying effects to
sound using natural language [19].

AudioCLIP extends CLIP, a text-image model, by incorporat-
ing audio, aligning it with text and images in a shared embedding
space [20]. Utilizing ESResNeXt for audio encoding, AudioCLIP
enables cross-modal retrieval and classification tasks, effectively
bridging audio, text, and visual content.

MuLan employs contrastive learning to align music and text
embeddings, enabling applications like music retrieval based on
textual descriptions [21]. MuQ-MuLan builds upon this by in-
tegrating MuQ’s music representations, enhancing tasks such as
zero-shot music tagging and music-text retrieval [11].

While these models effectively align audio and text based on
semantic content, their focus on objective accuracy, such as asso-
ciating the word “bird” with the sound of birdsong, is not a re-
quirement of of our system. Associating words with sounds based
on abstract relationships extends beyond objective semantic align-
ment, presenting challenges for existing models. We seek a tool
that is more flexible and open in the hopes of creating more cre-
ative and artistically interesting mappings.

2.4. Alignment Techniques

Our task is to map two disparate feature spaces; one possible so-
lution is to attempt to align the two spaces. This can be achieved
through a variety of methods that can be reduced to the idea of a
mapping matrix or function that transforms the points of one space
to align with the points of another space [22].

In [23], the authors draw an analogy between this problem
and the alignment of 3-D point clouds: if we can translate one
point cloud to match the distribution of another, we have created
an effective mapping between the point clouds. This is essentially
Procrustes problem. In the domain of point cloud matching, two
common methods for achieving this alignment are the Procrustes
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method and the Iterative Closest Point method. The authors of
[23] go on to introduce Mini-Batch Cycle Iterative Closest Point,
which we call ICP for simplicity, a method for aligning text and
speech sounds in an unsupervised way. The algorithm for ICP is
as follows:

Given a sound space S and text space T , the first step of ICP
is to perform Principal Component Analysis (PCA) to reduce the
spaces to the same dimension. Consider two transformational ma-
trices WS which maps from S to T and WT which maps from T to
S; each matrix is initialized to the identity, under the assumption
that the spaces share a basic similarity.

Now perform an iterative process on mini-batches of S and T :

1. For each s ∈ S, find t∗, the nearest WT t to s, which is the
nearest text encoding to s

2. For each t ∈ T , find s∗, the nearest WSs to t, which is the
nearest sound encoding to t

3. Optimize WS and WT using mini-batch Stochastic Gradi-
ent Descent by minimizing:

∑
j

∥s∗j −Wttj∥+
∑
i

∥t∗i −Wssi∥+

λ
∑
i

∥si −WTWSsi∥+ λ
∑
j

∥tj −WSWT tj∥ (1)

The second two terms represent cycle constraints, ensuring
that transforming a text to a sound and back to a text would yield
the original text. After a number of iterations, we have generated
two matrices WS and WT which can map between the two spaces
[24].

Another alignment technique takes advantage of Generative
Adversarial Networks (GANs) to train a mapping between text and
sound spaces [25, 26]. The generator in the adversarial game is the
mapping matrix WT , which creates embeddings in the sound space
given an embedding in the text space. The discriminator attempts
to distinguish between a real sound embedding s ∈ S and a “fake”
sound embedding WT t that is an output of the generator. After
adversarial training, WT can be used to map text to sound.

3. METHODOLOGY

In order to map text embeddings to sound embeddings, we de-
velop the following system that takes as input a sound corpus and
a text string. First, each sound in the corpus is pre-processed, dur-
ing which it may be sliced into multiple chunks, leading to a total
number of sounds n that may be greater than the number of sound
files in the corpus. Then, each of these processed sounds are em-
bedded into the sound space, creating a matrix S ∈ Rn,p where p
is the output dimensionality of the sound encoder. The input text
of m words is similarly embedded into the text feature space of
dimensionality q, creating a matrix of text embedding T ∈ Rm,q .

Next, both S and T are normalized and dimensionality reduc-
tion is performed to reduce them to the same number of features.
Our new S and T are of shape (n, d) and (m, d), respectively.

A mapping strategy is employed in order to find a sound em-
bedding that best fits a given text embedding. We use three distinct
mapping strategies:

1. Identity Mapping: The simplest mapping in which the
mapping matrix is the identity matrix, WT = I . For a
given text embedding, the sound that is closest to the text
embedding is selected as the output.

2. Cluster Mapping: First, the text embeddings and clustered
and the sound embeddings are clustered. Then, for a given
text embedding, the sound cluster whose centroid is closest
to the cluster the text embedding is in is selected. Finally,
the sound embedding in that cluster that is closest to the text
embedding is selected as the output.

3. Mini-Batch Cycle Iterative Closest Point (ICP): This
method iteratively aligns the text and sound spaces by op-
timizing transformation matrices to minimize distance and
enforce cycle consistency. A mapping matrix WT is learned
through optimization. For a given text embedding t, the
nearest sound embedding to WT t is selected as the output.

The system is evaluated using three distance metrics which
are derived from the following logic: given two text embeddings
ti and tj , and the two corresponding sounds they map to, si and
sj , the distance between ti and tj should be similar to the distance
between si and sj . In this way, words that are similar should map
to sounds that are similar, words that are distantly related should
map to sounds that are distantly related. From this idea we use the
following three distance metrics:

1. Pairwise Distance: The distance between text is calculated
in the text embedding space T and the distance between
sounds is calculated in the sound embedding space S. The
total distance is calculated as the sum of the difference be-
tween the distances:

D =
2

m(m− 1)

m∑
i,j

|d(ti, tj)− d(si, sj)| (2)

where m is the number of words in the text input, t ∈ T
is a text embedding, s ∈ S is a sound embedding, and d is
any distance function between two embeddings.

2. Wasserstein Distance: Instead of subtracting the distances
between text and sound pairs, we calculate the Wasserstein
distance between the distribution of text pair distances and
sound pair distances.

3. CLAP Distance: Same as Equation 2 except the distances
between text pairs and sound pairs are calculated in the
shared embedding space of the CLAP model [18].

When the clustering mapping is performed, we use clustering
metrics, including the silhouette score, Calinski-Harabasz score,
and Davies-Bouldin score, to evaluate the quality of a clustering
result by analyzing the compactness and separation of clusters.
The silhouette score measures how similar a data point is to oth-
ers within its cluster compared to those in neighboring clusters,
with values ranging from -1 (poor clustering) to 1 (well-defined
clusters) [27]. The Calinski-Harabasz score evaluates the ratio of
between-cluster variance to within-cluster variance, with higher
values indicating more distinct and well-separated clusters [28].
The Davies-Bouldin score, in contrast, assesses the average sim-
ilarity between each cluster and its most similar cluster, where
lower values suggest better clustering as it indicates minimal over-
lap between groups [29]. These metrics are particularly useful for
datasets where the inherent cluster structure is unknown, providing
a quantitative means to compare different clustering approaches
and parameter choices.
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4. EXPERIMENTS AND RESULTS

We consider one experiment to be a unique setting of the following
parameters: sound corpus, text input, sound embedding method,
text embedding method, sound pre-processing method, normaliza-
tion method, number of PCA components, mapping method, dis-
tance metric for nearest neighbor search, and number of clusters,
if the clustering method is used. In total, we ran 7,346 experiments
across 6 sound corpora and 3 text inputs.

We experiment with a single sound embedder, MuQ, using
the pre-trained MuQ-large-msd-iter model, which embeds a given
sound as a matrix of shape (t, 1024) where t is relative to the length
of the sound file. In order to adjust this embedding to return a ma-
trix of consistent shape, we average across time to return a vector
of length 1024. Therefore, our sound embeddings exist in 1,024-
dimensional space.

Three text embedders are tested: word2vec, fastText, and
RoBERTa. For word2vec, we use the word2vec-google-news-300
pre-trained model, which is trained on 3 million words from the
Google News dataset. For fastText we use the cc.en.300 pre-
trained model, which is trained on Common Crawl and Wikipedia
[30]. Both models embed words in a 300-dimensional space.

As previously mentioned, word2vec and fastText are static
embedders in which the position of a word in a sentence is not
considered. These models return the same embedding for an input
word every time. fastText has the advantage of being able to pro-
cess words from outside the dictionary it was trained on, whereas
word2vec cannot. If word2vec encounters a word it has not seen
during training, it will skip the word and there will not be an asso-
ciated sound for that word in the final sound file.

RoBERTa is a contextual model, meaning the same word can
result in different embeddings based on its position and context
in the input sequence. We use the roberta-base pre-trained model
hosted on HuggingFace which embeds words in a 768-dimensional
space. One feature of RoBERTa is the ability to understand rare or
complex words by splitting them into sub-words that it can prop-
erly parse. In order to maintain a one-to-one mapping between
words and sounds, if a word is split into sub-words we average the
embeddings for each sub-word and use this as the embedding for
the word.

We implement three sound pre-processing methods. For each
method, there is the option to remove silence from the input sound
before applying further processing. The selected method is run on
each sound in the provided corpus, and the outputs of the method
are input to the sound embedding model. The three methods allow
the input sounds to be chunked in different ways:

1. full: The entire input sound is used, no chunking is per-
formed

2. onsets: An onset detection is performed and the sounds are
chunked at the beginning of a new onset

3. grain: Given a grain size g in milliseconds, the input sound
is chunked into equal length grains of length g

For onset detection, we use librosa’s onset.onset_detect
method [31].

We use sklearn’s StandardScaler as our normalization method,
which subtracts the mean and divides by the standard deviation
[32]. For dimensionality reduction, sklearn’s PCA with default
settings is used with number of components set to 2, 5, 10, and
20. We test all three mapping methods defined in Section 3, which
we call the identity, cluster, and ICP methods. We use Euclidean

distance and cosine distance as our two distance metrics, which
are used to find the nearest neighbor and as the distance functions
used in our mapping evaluations. For clustering, we use sklearn’s
implementation of KMeans and test with the number of clusters k
set to 2, 5, 10, 20, and 30.

For the implementation of ICP, we perform a grid search to
find the optimal hyper-parameters and settle on the following val-
ues: a learning rate of 0.001, batch size of 16, cycle weight
λ = 0.7, with 75 iterations per batch.

4.1. Evaluation

As detailed in Section 3, we use three distance metrics to evalu-
ate each experiment: pairwise distance, Wasserstein distance, and
CLAP distance. For calculating the Wasserstein distance, we use
scipy’s scipy.stats.wasserstein_distance [33]. For
calculating the CLAP distance, we use the laion/clap-htsat-fused
pre-trained model from HuggingFace which embed sound and text
in a 512-dimensional space.

For experiments that use clustering, we evaluate the clustering
with three metrics: silhouette score, Calinski-Harabasz score, and
Davies-Bouldin score, all of which are implemented with sklearn’s
metrics library. After the sound and text spaces are clustered
separately, we create a combined space that contains the clusters
of both spaces, and evaluate the clustering of that combined space.
We calculate the Pearson’s correlation coefficient between each
mapping evaluation and each clustering metric in order to discover
the relationship between mapping quality and clustering quality
[34].

4.2. Quantitative Results

We present a comparison of each mapping method (identity, clus-
ter, and ICP) and the average values for each mapping evaluation
method (pairwise, Wasserstein, and CLAP) in Table 1. In Table
2, we show both the mapping evaluations and clustering metrics
to compare how the number of clusters k affects the result. This
also demonstrates the relationship between clustering quality and
mapping distance.

In order to further understand the relationship between map-
ping quality and clustering quality, we calculate the Pearson corre-
lation coefficient between each mapping evaluation and each clus-
tering metric as shown in Table 3. This measures the strength and
direction of the linear relationship between two variables, where 1
indicates a perfect positive correlation, -1 indicates a perfect neg-
ative correlation, and 0 suggests no linear relationship.

Mapping Pairwise Wasserstein CLAP
Identity 5.40 3.80 0.411
Cluster 5.53 3.84 0.426
ICP 5.86 4.08 0.417

Table 1: Comparison of average mapping distance for different
mapping methods, using a Euclidean distance metric. Lower val-
ues are better; the best values for each metric are bolded.

4.3. Qualitative Results

Qualitative evaluation involved listening tests by the authors to as-
sess the artistic interest of the generated sounds, which is a subjec-
tive measure heavily influenced by our listening preferences and
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Mapping Evaluations Clustering Metrics

Number of Clusters Pairwise
(lower is better)

Wasserstein
(lower is better)

CLAP
(lower is better)

Silhouette
(higher is better)

Calinski-Harabasz
(higher is better)

Davies-Bouldin
(lower is better)

2 5.64 4.08 0.428 0.043 161 3.53
5 5.46 3.90 0.429 0.157 373 1.50
10 5.65 3.80 0.440 0.131 330 1.19
20 5.59 3.78 0.419 n/a 348 0.989
30 5.28 3.54 0.407 n/a 363 0.911

Table 2: Comparison of average mapping distance and cluster metrics for different number of clusters k. Bolded values are the best for that
metric. The silhouette scores for k = 20 and k = 30 are purposefully omitted; the score could not be calculated as there were not enough
samples per cluster.

Silhouette
(negative is better)

Calinski-Harabasz
(negative is better)

Davies-Bouldin
(positive is better)

Pairwise 0.14 -0.37 0.08
Wasserstein 0.17 -0.30 0.05
CLAP 0.22 -0.08 -0.06

Table 3: Pearson correlation coefficients between the mapping evaluation metrics and clustering metrics for experiments that use the cluster
mapping method.

histories. While this can be problematic if presented as an objec-
tive evaluation, we believe it is still valuable since this is an artistic
tool whose value is determined by the preferences of the user.

The choice of sound corpus and text input has the largest effect
on the resulting sound. We find that using poetry as input can lead
to interesting results, since the use of meter and repetition of words
can create a similar sense of meter/rhythm through repetition in the
resulting sound. The type of sound pre-processing is also impor-
tant as it determines the length of the sounds that are concatenated.
If the pre-processing results in sound chunks of equal length then
the sense of rhythm is further strengthened since new onsets occur
at regular periods.

The system is prone to repetition of samples if a static text
encoder is used with a text input that features repetition of words.
When RoBERTa, a contextual model, is used then repetitions of
the same word do not necessarily have the same encoding, leading
to less exact repetition in the sound output. For example, in a text
input that features the word "and" three times and a selection of
singing voices as the sound corpora, fastText chose the exact same
sound sample to represent this word each time. However, when
RoBERTa was used for the same input, it chose three samples of
the same vowel being sung but from different singers, creating a
cohesiveness without exact repetition.

We found the sound outputs from the identity and cluster
methods to be more similar to each other than the ICP mappings.
This is likely due to the fact that ICP attempts to align the two
spaces with an additional transformation matrix, which would lead
to a different choice of sound than if the transformation had not
been applied. This can be useful when the user finds a selec-
tion of parameters they like (sounds, text, encoders, pre-processing
method) but wants to create a different version of the output, ICP
can provide a new mapping that uses different sounds but keeps the
rest of the parameters the same. Since ICP is a stochastic method,
each run of the method can result in a different mapping, leading
to a wide variety in its outputs even for the same input parameters.

5. DISCUSSION

Quantitatively, the identity mapping performs best across all three
evaluation metrics, followed by the clustering method, and finally
by ICP. Both pairwise distance and Wasserstein distance rank the
mapping methods in that order, and CLAP distance ranks iden-
tity as the best, followed by ICP and clustering last. The similar
ranking across evaluation methods suggest that the methodology
of comparing pairwise distances is sound.

The number of clusters k used in clustering has an effect on the
evaluation, with higher values of k leading to better mappings. In
fact, the clustering method outperforms the identity method if only
experiments that use k = 30 are considered, which suggests that
fine-tuning the number of the clusters for the specific input data
could improve the effectiveness of the clustering method. Simi-
larly, we held the hyper-parameters of ICP constant across all ex-
periments but it is possible the ICP mapping could improve if the
parameters were optimized for each input.

For the clustering method, we investigate whether the quality
of the clustering effects the quality of the mapping. Although the
relationship is not clear, the data suggests that a better clustering
may lead to a better mapping. This is illustrated by the fact that
as k increases, the quality of the mapping increases as represetned
by the Davies-Bouldin score, which shows its best value for k =
30. This is strengthened by the fact that the second best Calinski-
Harabasz score also corresponds to k = 30. However, this finding
is not supported by the silhouette score, which has the best score
at k = 5. It was not possible to calculate the silhouette score
for k = 20, 30 as there cannot be a cluster with less than two
samples in order to calculate the silhouette score, and due to the
small number of samples in some of our sound corpora and text
inputs, with large k values it was not guaranteed that every cluster
would have more than two samples.

The Pearson correlation coefficients show mixed results. The
Calinski-Harabasz score has the most evidence to suggest that bet-
ter clustering, as indicated by a higher value of the score, leads
to a better mapping. However, the Davies-Bouldin index shows a
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near zero correlation across all three mapping evaluations, and the
silhouette score shows the a positive correlation, which means a
better clustering leads to a worse mapping.

It is surprising that the simplest mapping method performs
the best, and that as the complexity of the method increases, the
quality of mapping decreases. This could suggest that simple ap-
proaches work best for the type of data we input, or that the metrics
used favor simple mappings over complex mappings. There could
be other reasons for the discrepancy in evaluations, such as the
parameters used in the clustering and ICP methods. For the ICP
method, the initialization used for mapping matrices is known to
be important for the effectiveness of the system [23]. We use the
same initialization as the original paper, which is the identity ma-
trix. This choice is a result of the assumption in the original paper
that the two spaces have a similarity in distribution as they are both
representing language data. In our problem this is not the case, we
have both language and non-language data, and it is possible that
this assumption is invalid.

In our qualitative evaluation, we did not find a clear ranking
in terms of which mapping method results in the best sound out-
puts. The identity and cluster methods often lead to nearly iden-
tical mappings, and ICP would result in a different set of sound
outputs for the same text input. Therefore, the choice of mapping
methods is not based on objective accuracy but in artistic interest
as determined by the user.

6. CONCLUSION AND FUTURE WORK

This research demonstrates the potential of unsupervised methods
for text-to-sound mapping, providing a framework that aligns text
and sound embeddings to create artistically interesting mappings.
The system’s flexibility allows it to adapt to various datasets and
parameter configurations, making it a valuable tool for creative
applications.

We experimented with a variety of sound and text inputs, text
encoders, pre-processing methods, and mapping methods. By per-
forming a quantitative evaluation on our outputs we were able to
determine which methods and settings led to the “best” result.
However, as a creative tool, the objective evaluation is secondary
to the opportunities for interesting and varied outputs. Ultimately,
these different parameters serve to enable artistic control of the
output in different ways, based on the preferences of the user.

There are many paths for continuing and expanding this work.
Other mappings and alignment techniques could be attempted.
More work can be done to refine and improve the ICP mapping
by improving the initialization of the mapping matrices through
Optimal Transport or through further fine-tuning after optimiza-
tion, such as running Procrustes method [23]. For example, the ad-
versarial approach described in Section 2.4 could provide its own
mapping or could be the initialization matrix for ICP.

A further analysis of evaluation methods and distance metrics
could be useful. We would like to explore the tradeoffs of using
Euclidean vs. cosine distances in finding nearest neighbors and
calculating our distance metrics. Furthermore, additional analysis
in the relationship between clustering quality and mapping quality
could shed more light on the effectiveness of the clustering strat-
egy.

An extension of the system could allow for a text corpus to be
input that generates the mapping in the same way, but the text that
is converted to sound is input separately by the user. This input text
could have words not seen in the text corpus, and the system would

have to map a new text it has not seen before. This is analogous to
training a network and then providing unseen data at test time.

Currently, the system performs the task of text-to-sound re-
trieval, but a different approach could easily lead to text-to-sound
generation. If the sound encoder used creates a continuous fea-
ture space in which any point in the space can be sampled to cre-
ate a coherent sound, then instead of finding the nearest neigh-
bor in the sound space to a mapped text embedding, the system
could simply generate the sound that exists at the mapped embed-
ding. This would be possible if the sound encoder is a variational
auto-encoder. Unlike current text-to-sound methods which attempt
an objective semantic match between input text and output sound
(generating the sound of a bird if the input text is “bird”), this sys-
tem would provide a different lens on the task of text-to-sound that
is focused on artistic creation.

As an artistic tool, a more robust qualitative evaluation that in-
cludes input from multiple types of users, including sound artists
and composers, writers and poets, and non-artists would yield a
more well-rounded evaluation. The possibility of a real-time tool
in which sounds can be immediately retrieved while the user types
could prove interesting, even more so if the sound corpus can
be added to and changed in real-time, for example tracking mi-
crophone input from performers or instruments. This tool is es-
sentially a monophonic instrument, as it never creates a sound in
which two samples play at the same time. A polyphonic version
could take each line of text input as a separate voice to be played
concurrently, sonifying each line of poetry in a stanza at the same
time, for example.
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