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ABSTRACT

This study evaluates the performance of five objective audio qual-
ity metrics—PEAQ Basic, PEAQ Advanced, PEMO-Q, ViSQOL,
and HAAQI —in the context of digital music production. Unlike
previous comparisons, we focus on their suitability for produc-
tion environments, an area currently underexplored in existing re-
search. Twelve audio examples were tested using two evaluation
types: an effectiveness test under progressively increasing degra-
dations (hum, hiss, clipping, glitches) and a robustness test under
fixed-level, randomly fluctuating degradations.

In the effectiveness test, HAAQI, PEMO-Q, and PEAQ Basic
effectively tracked degradation changes, while PEAQ Advanced
failed consistently and ViSQOL showed low sensitivity to hum
and glitches. In the robustness test, ViSQOL and HAAQI demon-
strated the highest consistency, with average standard deviations
of 0.004 and 0.007, respectively, followed by PEMO-Q (0.021),
PEAQ Basic (0.057), and PEAQ Advanced (0.065). However,
ViSQOL also showed low variability across audio examples, sug-
gesting limited genre sensitivity.

These findings highlight the strengths and limitations of each
metric for music production, specifically quality measurement with
compressed audio. The source code and dataset will be made pub-
licly available upon publication.

1. INTRODUCTION

Audio quality is a crucial factor in ensuring that created content is
effectively communicated throughout the production process. As
[1] observes, "Even for the layperson, sonic quality does matter."
Similarly, [2] highlights that audio quality has a significant im-
pact on the overall listening experience. Pop or rock genres music
thrives on Home-studio recordings and proliferation of the digital
audio technology. However, they are more susceptible to accu-
mulate various distortions throughout the signal chain. Degrada-
tion can stem from a variety of sources—including, but not lim-
ited to, cable hiss or grounding noise [3], clipping artefacts intro-
duced by effects plugins [4], glitches within digital audio worksta-
tions (DAWs) [5], and compression artefacts from lossy CODECs.
These degradations can disrupt both released recordings, broad-
casts and live sound. Despite their impact, the combined effects
of these multiple distortions on perceived audio quality remain un-
derexplored.
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Audio quality is traditionally assessed using subjective and ob-
jective methods. While subjective evaluation is considered more
accurate, it is often constrained by its time-intensive and costly
nature. In contrast, objective metrics, such as PEAQ [6], PEMO-Q
[7], ViSQOL [8], and HAAQI [9], are commonly utilised. These
intrusive objective models typically follow a standardised process:
(1) employing an auditory model to extract relevant audio fea-
tures, (2) generating quality indices by comparing the processed
signal to a reference signal, and (3) mapping these indices to Mean
Opinion Scores (MOS) using subjective dataset training. Objec-
tive audio quality metrics are typically designed for specific appli-
cations; however, their usage often extends beyond their original
domains. For instance, PEAQ, ViSQOL, and PEMO-Q were pri-
marily developed for evaluating audio CODEC, yet studies by [10]
and [11] have utilised PEAQ and ViSQOL, respectively, to assess
AI-generated audio. Similarly, [12] employed PEAQ to evaluate
time-scale modifications of audio. Metrics such as HASQI and
HAAQI, initially intended for hearing aid applications, have also
been applied to assess recording distortions [13]. A plausible ex-
planation [14] for the field-dependent performance of these met-
rics lies in the training datasets and the underlying auditory mod-
els used in their development. For instance, studies such as [9] and
[15] demonstrate that PEAQ can be adapted to novel applications
by recalibrating with domain-specific training datasets.

This study categorises digital audio degradations that are com-
monly found in recording studio signal chains into four distinct
types, distinguishing between noise - defined differently from the
degradation in other acoustic applications - such as CODEC arte-
facts or hearing aid processing distortions. These categories in-
clude (1) content-unrelated pitched noise, (2) content-unrelated
broadband noise, (3) content-related and inharmonic noise, and
(4) temporal noise. This study builds on the extensive subjective
evaluations that have already been conducted to validate these met-
rics. Rather than reassessing their alignment with subjective per-
ception, the focus is on evaluating their suitability as indicators in
a digital recording studio context. Building on previous work, this
study examines the strengths and limitations of each metric in the
context of music production. The findings help clarify how degra-
dations impact audio quality and could potentially support the use
of background monitoring metrics to quickly flag issues and target
fidelity levels in practical workflows.

Section 2 provides a detailed description of the experimental
methodology and the characteristics of the noise types. Section 3
presents an analysis and discussion of the findings.
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2. METHOD

2.1. Degradation simulations

This section expands on the discussion of studio degradations, de-
tailing the definitions, origins, and methods for simulating com-
mon types of noise within the signal chain. The study assumes
a typical home studio setup consisting of a few microphones, a
computer, and an audio interface, all built using relatively budget-
friendly equipment and operating in a room without proper acous-
tic treatment. This scenario underscores how susceptible modern
recording setups are to various types of degradation and motivates
a study of their effects on audio quality.

2.1.1. Hum

Hum is a distinctive type of degradation categorised as a content-
unrelated pitched noise, caused by power line interference. As
noted by [16], the origins of this degradation are often linked to
inadequate power-supply stabilisation in vacuum-tube-era record-
ing equipment, or insufficient shielding of sensitive microphone
cables. Structurally, the hum typically consists of a fundamental
frequency (the so-called "ground loop" - 50 Hz in Europe and 60
Hz in the United States) and its harmonic components. A spectro-
gram derived from [17] illustrates this phenomenon, showing hum
disturbances at 50 Hz and 150 Hz in a representative example. To
simulate potential hum-related degradations, this study replicates
the structural characteristics of hum, while varying its loudness
levels. The signal-to-noise ratio (SNR) is employed as a parame-
ter to manipulate the intensity of the hum degradations.

2.1.2. Hiss

In content-unrelated broadband noise, "hiss" in an audio recording
is a steady background noise, often resembling a soft, continuous
"s" sound. According to the [18], random noise must be expected
in the signal chain because it is inherent in all-electric devices.
The source of the hissing noise in the signal chain might be hard
to locate due to its variety, such as the hiss of a microphone [19]
or an overworking transducer [20]. Given the random nature of
hissing noise, additive white Gaussian noise is frequently utilised
in simulations, as demonstrated in previous research [21]. In this
study, white noise is used to replicate the characteristics of hissing
noise, with its loudness levels adjusted to simulate varying inten-
sities. The SNR controls the strength of the white noise relative to
the source signal.

2.1.3. Clipping

Digital clipping occurs when the amplitude of an audio signal ex-
ceeds the maximum threshold of the digital system, causing the
over-threshold samples to be truncated to the threshold value. This
process introduces nonlinear distortion, including alterations to the
original signal and the generation of new harmonic components.
Both [13, 22] have identified clipping as a significant source of au-
dio degradation, with listening tests rating its impact as "very an-
noying". Annoyance can be rated using ISO 15.666. In this study,
digital clipping is categorised as content-related and inharmonic
noise. The quantity of clipping is based on a peak to threshold fac-
tor so that quieter signals are exposed to the same relative amount
of clipping as louder signals would be, for any given percentage of
degradation.

2.1.4. Glitch

Glitches are a common form of temporal noise encountered in mu-
sic production, characterised by brief interruptions in the digital
audio stream, often referred to as "dropouts" [5]. These inter-
ruptions produce audible artefacts, such as cracks or pops, during
recording or playback. Glitches typically arise from failures in
real-time data communication during digital audio processing on
a computer. Specifically, audio systems rely on buffers for trans-
ferring audio samples between the operating system (OS) and the
digital-to-analogue converter. When the OS fails to deliver pro-
cessed samples to the audio buffer within the required timeframe
[23], dropouts occur, resulting in glitches. Improper configuration
of audio input and output settings is a common cause of such fail-
ures.

In this study, glitches are categorised as a form of temporal
noise. To simulate this degradation, dropout events are introduced
by randomly setting a specified percentage of audio data packets
to zero, replicating the effects of failed buffer delivery in a digital
audio system. These simulated glitches mimic real-world condi-
tions where dropouts disrupt entire audio buffer segments. The
number of glitches is controlled as a parameter, representing the
frequency of such events in the audio clip. The position of each
glitch is chosen randomly. At a sample rate of 48 kHz and a block
size of 256 samples, each glitch lasts approximately 0.05 seconds.
Fig.1 illustrates a simulated glitch scenario, where the disruption
is visible as a discontinuity in the waveform.

It is important to note that this study focuses solely on unin-
tentional glitches as a form of audio degradation. Creative uses of
glitch effects, such as in the "glitch music" genre[24], fall outside
the scope of this discussion.

Figure 1: Simulated glitch in a 100 Hz test tone at a 48 kHz sample
rate with a 256-sample buffer segment.

2.2. Evaluation process

This section describes the design of a system to simulate degrada-
tions in music production, along with an evaluation process apply-
ing various objective metrics. The subsequent content details the
experimental preparation, including the selection of audio tracks,
the choice of evaluation metrics, the software environment and the
methodology employed for the evaluation.

2.2.1. Audio examples selection

Twelve audio tracks (list in Table.1) used for testing are drawn
from a subset of tracks from the MUSDB18 dataset [25]. The
MUSDB18 is renowned for its extensive collection of pop/rock
genres, which is well-suited for our study purposes. In both tests,
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only the final mix product, "mixture.wav", is evaluated. To en-
hance computational efficiency, the first 8-second excerpts are ex-
tracted from the file for processing.

Table 1: The Audio tracks for testing.

TrackT itle Genre
MusicDelta−Beatles Singer/Songwriter
MusicDelta−Britpop Pop
MusicDelta− Country1 Country
MusicDelta− Country1 Country
MusicDelta− Country1 Country
MusicDelta− Country2 Country
MusicDelta−Disco Pop
MusicDelta−Gospel Pop
MusicDelta−Grunge Rock
MusicDelta−Hendrix Rock
MusicDelta− Punk Rock
MusicDelta−Reggae Rock
MusicDelta−Rock Rock

MusicDelta−Rockabilly Rock

2.2.2. Metric Implementation and Evaluation Setup

Five objective metrics algorithms are utilised in this study: gst-
PEAQ (both basic and advanced versions), aligned to the ITU-R
BS.1387-1, as implemented in [26]; PEMO-Q developed by [7];
ViSQOL was introduced by [8]; and for the implementation of
HAAQI, the study chose the implementation from [27]. Due to
the differing scales of these metrics, their outputs are normalised
to [0,1] before generating the comparative plots presented in the
results section.

Metrics were computed offline on a Linux operating system,
primarily using Python scripts, with PEMO-Q executed via MAT-
LAB. Processing was done at 48 kHz and 16-bit precision, as
required by PEAQ and ViSQOL. All metrics used floating-point
arithmetic to ensure consistent accuracy. HAAQI was run in nor-
mal hearing mode without adjustments for hearing loss.

2.2.3. Evaluation procedure and test design

The evaluation process uses objective metrics to compare degraded
audio with reference signals, analysing the impact of signal chain
degradations on audio quality. To simulate cumulative effects, the
audio mixture undergoes a multi-step degradation procedure and
CODEC compression [28]. The lossy (MP3) versions serve as ref-
erences. To reduce the influence of loudness level, both levels of
degraded and reference tracks are matched to -14 LUFS, ensuring
consistent levels throughout the evaluation. LUFS, a standardised
loudness measurement unit defined by EBU R 128, is adopted for
audio normalisation. The -14 LUFS level aligns with the loudness
standards commonly used by popular streaming platforms, provid-
ing a consistent baseline for comparison. The evaluation process
is demonstrated in Fig.2.

The study assumes that an ideal metric should accurately and
sensitively reflect changes in audio quality as degradation levels
vary (effectiveness), while remaining stable under fixed degrada-
tion conditions and across audio samples (robustness). Therefore,
the evaluation process includes two individual tests.

Figure 2: Audio-quality evaluation pipeline for clean reference vs.
degraded signal

Effectiveness Test: the effectiveness test evaluates metric per-
formance as audio degradations gradually increase. Each degrada-
tion type (hum, hiss, clipping, glitches) is applied in incremental
steps: signal to hum and hiss vary from severe (1 dB SNR) to mild
(80 dB SNR), clipping from 1% to 100% of samples, and glitches
from 1 to 100 occurrences. Metrics are averaged across audio ex-
amples at each degradation level.

Robustness Test: the robustness test examines metric stability
under fixed degradation conditions, introducing fluctuation through
random factors such as white noise and glitch placement. Condi-
tions include signal-to-hum and white noise at 60 dB, 1% clipping,
and 5 glitch occurrences. Metrics are assessed over 100 iterations
for each audio example to quantify consistency under the various
conditions.

3. RESULTS

By comparing the metric results, this analysis identifies trends and
limitations of each metric to quantify audio quality, highlighting
their effectiveness and robustness under various degradation con-
ditions.

3.1. Effectiveness test

This section explores audio-quality metrics across four degrada-
tion types: hum noise, white noise, hard clipping, and glitches.
Metrics are evaluated against references to identify trends and lim-
itations as degradations increase. The study observed similar trends
across the audio examples, thus, the curves discussed in the main
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text represent the mean values across examples. Individual results
for each audio example are provided in Appendix 6.

3.1.1. Hum noise degradation test

Figure 3: Mean metric trends with rising signal to hum noise ratio,
comparing degraded audio to lossy MP3 references.

The metrics in Fig.3 rise with increasing signal-to-hum noise
ratio and plateau between 30–50 dB, indicating improved quality
as hum noise decreases, and eventually converge toward to 1.

ViSQOL show stable scores across all SNR levels. This early
convergence indicates lower sensitivity to the hum noise. PEAQ
Basic, PEMO and HAAQI show greater sensitivity at lower SNR;
PEAQ Basic improves sharply beyond 20 dB, while PEMO and
HAAQI increases gradually, both capturing incremental quality
changes.

3.1.2. Hiss noise degradation test

Figure 4: Mean metric trends with rising signal to white noise
ratio, comparing degraded audio to lossy MP3 references.

All metrics in Fig.4 exhibit an upward trend as the signal-to-
white noise ratio increases, indicating that low SNR conditions
result in significant signal degradation. Additionally, the metrics
tend to plateau at higher SNR levels above 60 dB, where the noise
becomes negligible and has minimal impact on perceived audio
quality.

The most critical region for evaluation occurs at middle-range
SNR values(30dB to 60dB), where the metrics show notable vari-
ability in their response to moderate levels of degradation. As
SNR increases, PEMO-Q and PEAQ Basic show a sharp quality
improvement between 40 to 60 dB, while HAAQI and ViSQOL
exhibit a more gradual rise starting around 30 dB SNR. PEAQ Ad-
vanced displays an anomalous peak at 0 to 10 dB SNR, indicating
potential algorithmic limitations in low-SNR conditions.

Figure 5: Mean metric trends with rising percentage of clipping,
comparing degraded audio to lossy MP3 references.

3.1.3. Clipping degradation test

All metrics in Fig. 5 exhibit a downward trend as the clipping
percentage increases, highlighting the severe distortion introduced
even at levels below 5%. PEAQ Basic and PEMO-Q drop sharply
and plateau around 20%, while HAAQI declines more gradually,
stabilising near 50%. This stabilisation across metrics likely oc-
curs as the signal becomes heavily distorted and unrecognisable.
Notably, PEAQ Basic’s early decline aligns with findings from [9],
which reported its limitations in handling non-linear distortion. In
contrast, ViSQOL demonstrates a more gradual decline, reflect-
ing its moderate sensitivity to clipping distortion across all lev-
els. However, this behaviour underscores its limited effectiveness
in accurately identifying and assessing the impact of severe clip-
ping artefacts. Supported by [11], which reports that ViSQOL per-
forms poorly when applied to datasets containing clipping distor-
tion. Furthermore, PEAQ Advanced exhibits an unintended trend
after reaching its lowest point. This anomaly indicates its limita-
tions when handling extreme clipping conditions as well.

3.1.4. Glitch degradation test

Figure 6: Mean metric trends with rising occurrence of glitch,
comparing degraded audio to lossy MP3 references.

All metrics in Fig.6 generally decline as the number of glitch
occurrences increases. This trend is expected, as an increasing
number of glitches introduces severe interruptions in the audio sig-
nal, leading to a readily perceived degradation in quality. Due to
the randomness of glitch occurrences, all metrics exhibit a certain
degree of fluctuation as the number of glitches increases.

PEAQ Basic and PEMO-Q emerge as the most sensitive met-
rics to glitch degradation. PEAQ Basic shows a steep decline in
quality scores within the first 10 glitches, indicating a rapid re-
sponse to early interruptions. However, PEAQ Basic and PEMO-
Q exhibit noticeable fluctuations throughout the plot, where sce-
narios with more glitches occasionally achieve higher scores than
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Figure 7: The variability of audio quality metrics score under the conditions of fixed level degraded signal against the lossy MP3 reference
across the audio samples.

Table 2: Mean of each metric normalised score across each audio example.

Metric Country2 Punk Rock Beatles Rockabilly Country1 Gospel Reggae Britpop Hendrix Grunge Disco
PEAQ Basic 0.429 0.545 0.341 0.443 0.397 0.400 0.156 0.215 0.382 0.319 0.462 0.577
PEAQ Advance 0.773 0.786 0.695 0.719 0.629 0.683 0.520 0.694 0.639 0.650 0.763 0.783
PEMO-Q 0.679 0.547 0.704 0.609 0.707 0.625 0.410 0.671 0.651 0.687 0.517 0.733
HAAQI 0.797 0.828 0.829 0.805 0.773 0.759 0.762 0.815 0.800 0.798 0.826 0.830
ViSQOL 0.910 0.898 0.900 0.910 0.906 0.907 0.869 0.890 0.899 0.907 0.905 0.914

those with fewer glitches. The PEAQ Advanced metric demon-
strates similar behaviour; additionally, while the reference is in a
lossy condition, over-threshold values (scores exceeding 1.0) are
observed. In contrast, the HAAQI and VISQOL Audio show a
more stable decline. Whether this counterintuitive behavior re-
flects real-world conditions remains the subject of further work.

3.2. Robustness test

In addition to evaluating the effectiveness of the metrics, this study
assesses their robustness. In this test, we define robustness as
the degree of fluctuation in the metrics’ outputs when exposed
to controlled, but temporally randomised, noise conditions across
the range of audio stimuli. Boxplots represent the distribution of
scores, highlighting their spread and stability, along with the mean
and average standard deviation (STD) values across all audio ex-
amples.

The setup assessed each metric’s robustness under fixed degra-
dation conditions: 60 dB SNR hum noise, 60 dB SNR white noise,
1% clipping and 5 glitch occurrences across audio examples over
100 iterations. Due to the randomness of white noise and glitches,
the degradation affected the original signal slightly differently dur-
ing each iteration. This randomness introduces variability in the
metrics’ responses, making it a critical factor for assessing their
robustness.

The boxplot in Fig.7 shows score distributions over 100 iter-
ations under fixed degradation, and per-audio example mean val-
ues. Table.2 and standard deviations Table.3. On average, PEAQ
Basic (0.057) and Advanced (0.065) show the highest variability,
while VISQOL (0.004) has the lowest standard deviation, indicat-
ing superior robustness, followed by HAAQI (0.007) and PEMO-
Q (0.021).

The results also reveal perceptual differences across audio sam-
ples. All metrics assign lower scores to the gospel track, perhaps
due to its prominent vocals, which make degradations more no-
ticeable. ViSQOL shows stable variability across iterations but

also little variation across examples, suggesting limited sensitivity
to genre-specific differences.

3.3. Discussion

The effectiveness test evaluates how each metric responds to in-
creasing degradation levels, revealing differences across degrada-
tion types. HAAQI shows a smooth, gradual trend that aligns well
with linear degradation. PEAQ Basic and PEMO-Q also track
changes effectively, but display more abrupt shifts, and fluctua-
tions under glitches. ViSQOL responds to white noise and clip-
ping but remains flat under hum and glitches. PEAQ Advanced
shows inconsistent behaviour, including an unexpected peak with
white noise and unusually high scores at severe clipping levels.

In the robustness experiment, metrics were evaluated under
fixed but fluctuating degradations across audio examples. ViS-
QOL and HAAQI demonstrated the highest stability, with the low-
est standard deviations across the degradation. Meanwhile, ViS-
QOL and HAAQI also showed minimal variation across examples,
indicating limited sensitivity to genre differences.

Based on the effectiveness and robustness test findings, HAAQI
appears to be the most suitable metric for further research and
practical audio quality assessment. It also offers the added ben-
efit of being capable of assessing the impacts of degradation in
hearing loss conditions.

4. CONCLUSION

This study assesses the effectiveness and robustness of objective
audio quality metrics, specifically in the context of digital music
production for pop/rock genre examples. Unlike previous metric
comparison studies [9, 10, 11, 12, 13, 14, 15], we focus on as-
sessing the suitability of metrics and comparing their utility in this
particular context. In the result, HAAQI demonstrated the high-
est consistency in measuring degradation, aligning with findings
from [9, 13]. In contrast, PEAQ Advanced showed some incon-
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Table 3: Standard deviation (STD) of each metric normalised score across each audio example.

Metric Country2 Punk Rock Beatles Rockabilly Country1 Gospel Reggae Britpop Hendrix Grunge Disco
PEAQ Basic 0.076 0.009 0.086 0.032 0.056 0.040 0.041 0.089 0.052 0.069 0.079 0.063
PEAQ Advance 0.068 0.012 0.099 0.045 0.067 0.039 0.054 0.144 0.038 0.090 0.063 0.065
PEMO-Q 0.023 0.018 0.023 0.023 0.015 0.023 0.020 0.035 0.021 0.024 0.021 0.011
HAAQI 0.005 0.005 0.004 0.006 0.006 0.007 0.008 0.013 0.005 0.007 0.010 0.005
ViSQOL 0.004 0.002 0.004 0.003 0.004 0.004 0.004 0.005 0.004 0.004 0.004 0.001

sistencies. Whether these issues arise from inherent limitations or
specific test conditions remains an area for further investigation.
Building on these findings, the next phase of our research will use
HAAQI as an indicator to explore a broader range of degradation
mixtures. This will help identify particularly detrimental degrada-
tion combinations and inform the development of an quality metric
plugin for real-time metering in post-production applications.
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6. APPENDIX: EFFECTIVENESS TEST DETAILS

Figure 8: Trends with rising signal-to-hum noise ratio, comparing
degraded audio to lossy MP3 references.

Figure 9: Trends with rising clipping percentage of signal, com-
paring degraded audio to lossy MP3 references.

Figure 10: Trends with rising signal-to-white noise ratio, compar-
ing degraded audio to lossy MP3 references.

Figure 11: Trends with rising glitch occurrences, comparing de-
graded audio to lossy MP3 references.
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