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ABSTRACT

We present a spline-based method for compressing and re-
constructing Head-Related Transfer Functions (HRTFs) that pre-
serves perceptual quality. Our approach focuses on the magni-
tude response and consists of four stages: (1) acquiring minimum-
phase head-related impulse responses (HRIR), (2) transforming
them into the frequency domain and applying adaptive Wiener
filtering to preserve important spectral features, (3) extracting a
minimal set of control points using derivative-based methods to
identify local maxima and inflection points, and (4) reconstructing
the HRTF using piecewise cubic Hermite interpolation (PCHIP)
over the refined control points. Evaluation on 301 subjects demon-
strates that our method achieves an average compression ratio of
4.7:1 with spectral distortion ≤ 1.0 dB in each Equivalent Rect-
angular Band (ERB). The method preserves binaural cues with a
mean absolute interaural level difference (ILD) error of 0.10 dB.
Our method achieves about three times the compression obtained
with a PCA-based method.

1. INTRODUCTION

Head-Related Transfer Functions (HRTFs) capture how sound is
transformed from a source to the listener’s ears. The individuality
of HRTFs stems from the physical features of the listener such as
the size and shape of the head, torso, and pinnae, and the location
of the sound source relative to the listener. HRTF compression
and reconstruction are important for spatial audio, virtual reality,
and hearing aid applications. Dense HRTF datasets (i.e., those
comprising measurements at many locations) are essential for ac-
curate sound localization but also face practical challenges. Each
HRTF is represented by numerous frequency bins [1] and the stor-
age of an entire database can exceed several hundred megabytes
[2]. This is problematic in resource-limited environments, such
as mobile or wearable audio devices, where memory limitations
and processing capabilities directly impact real-time performance
[3]. Furthermore, personalized HRTFs greatly improve localiza-
tion accuracy compared to generic HRTFs [4], but are expensive
and difficult to capture. So, finding data representations that could
be used for interpolating existing HRTFs as a way of personaliza-
tion is desirable. As general awareness of spatial audio and HRTF
personalization increases, efficient methods for storing and adapt-
ing HRTFs to a given listener become a key point to consider for
practical implementation [5].
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Compression and reconstruction of HRTFs should not degrade
their perceptual attributes. In addition, reconstruction (decoding)
should be fast and simple to implement. Recent research on HRTF
compression has shown multiple methods aimed at reducing data
size efficiently while maintaining perceptual quality. Marentakis
et al. [6] showed that Principal Component Analysis (PCA) ap-
plied to HRTF magnitude spectra significantly improves the com-
pression ratio compared to time domain representations. Arévalo
and Villegas [7] proposed a method based on Eigen decomposition
of HRTFs, capable of achieving a compression ratio of 15:1 with
< 1 dB spectral distortion in the range of 100 Hz and 16kHz. In
that case, different Eigen values for each measurement and sub-
ject were used. Additionally, the “TT-Tucker” method proposed
by Wang et al. [8] employs multidimensional tensor decomposi-
tion, achieving approximately 98% data compression with supe-
rior perceptual fidelity compared to simpler PCA-based methods,
according to the authors.

Spherical harmonics have also been used. Lie et al. [9] intro-
duced a frequency-dependent harmonic decomposition of HRTFs
using a mixed-order approach (i.e., a 8-order for low frequencies
and a 22-order for high frequencies). They claimed to reduce the
number of coefficients without degrading the accuracy of percep-
tual localization.

In different domains, spline interpolation has been employed
for its smoothness and precision in representing continuous data
from discrete points [10]. For HRTF reconstruction, splines have
been explored by Carlile et al. [11], who used spherical thin-plate
splines to create continuous virtual audio from a small number of
measurements. Their research indicates that a high-fidelity Virtual
Auditory Space (VAS) could be achieved with only 150 HRTF
measurements. Their approach focused mainly on spatial inter-
polation rather than compression, and did not explore a minimal
set of control points needed to preserve spectral features. Völker-
ing et al. [12] showed that cubic splines on sparse horizontal-plane
HRTFs reduce the mean spectral error by up to 1 dB compared to
linear interpolation for 10◦ to 20◦ sampling.

The Spatially Oriented Format for Acoustics (SOFA) by Ma-
jdak et al. [13] is a standard for HRTF datasets. In its current
version, SOFA supports two compressed representations in addi-
tion to raw impulse responses: spherical harmonic decompositions
and cascaded second-order section (SOS) filter chains. Implying
that the previously HRTF compression alternatives (or the one pro-
posed here) cannot be leveraged by the standard.

The purpose of this research is to evaluate the compression
and reconstruction of HRTF magnitude spectra using spline-based
methods. We aim to reduce data storage, while ensuring that
the spectral distortion does not exceed 1.0 dB for each Equivalent
Rectangular Band (ERB), which model the frequency discrimina-
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tion performed by the basilar membrane. Furthermore, we im-
pose an absolute magnitude error between the original and recon-
structed HRTFs of ≤ 1.0 dB across frequency bands, as explained
in the following sections. While our current concern is in HRTF
compression, the proposed representation could pave the way for
HRTF personalization by standardizing the number of spline con-
trol points and modifying only their relative weights.

2. METHOD

Overall, our method comprises the four stages shown in Figure 1:
(1) Data acquisition: loading minimum phase, no interaural time
difference (ITD) head-related impulse responses (HRIRs) from a
database [14], (2) Computing their respective HRTFs and applying
adaptive Wiener filtering [15] to each magnitude spectrum, (3) ex-
tracting control points using derivative-based methods with itera-
tive segmentation, pruning, and (4) reconstructing the HRTF mag-
nitude response using spline interpolation (PCHIP) [16]. A freely
available implementation of this method is found at https:
//github.com/tomKruegerJapan/HRTF_CompInter.

Data Acquisition
Sofa Dataset
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FFT + Wiener Filter

Control Points
Derivative Analysis

Reconstruction
PCHIP Interpolation

Control Point
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Figure 1: Four stage pipeline of the proposed method.

2.1. Data and Acquisition

We use the publicly available SONICOM HRTF database [14].
Specifically, we used 793 minimum-phase (with no ITD) HRIRs
of 301 subjects, sampled at 48 kHz, for a total of 238, 693 mea-
surements. The minimum-phase representation eases the separate
treatment of spectral and temporal characteristics of HRTFs.

The corresponding SOFA files of these HRIRs were loaded
using the “sofa” library (version 0.2.0) in Python 3.11. These
files contain the sampling rate, impulse responses for both chan-
nels (left and right), and source location in spherical coordinates
relative to the center of the head.

2.2. Preprocessing and Filtering

Each impulse response was transformed into the frequency do-
main using the Discrete Fourier Transform (DFT). We compute the
magnitude frequency response (in dB) up to 20 kHz. The result-
ing HRTFs present spectral noise (i.e., local peaks and troughs),
which are unlikely to affect spatial perception, but pose a hur-
dle for the spline decomposition. To smooth such local spectral
“ripples,” several methods have been proposed in the past, includ-
ing cepstral smoothing and moving average over third-octave (or
smaller) bands [17], however, preliminary experiments indicated
that applying an adaptive Wiener filter [15] to each magnitude re-
sponse outperformed them, therefore we opted for it. Note also
that although the use of Wiener filtering for HRTF is uncommon,
it has been successfully applied to reduce artifacts in other audio
related problems such as source separation [18]. The smoothed
magnitude Msmooth for a given frequency bin f of an HRTF is
computed as

Msmooth(f) = Wiener
(
Morig(f);wbase, σnoise = 0.1

)
, (1)

where Morig, wbase, and σnoise represent the original magnitude,
the base window size, and the noise-power estimate, respectively.
The actual base window size depended on an error threshold T =
1.0 dB. When equation 2 holds∣∣Morig(f)−Msmooth(f)

∣∣ ≤ T, (2)

11 frequency bins were used, otherwise, 7 bins were used instead.
These settings were empirically determined.

2.3. Control Points Refinement and Pruning

After smoothing, we computed a set of control points for the re-
construction of the HRTFs. Control point candidates were identi-
fied with the first frequency derivative of the magnitude response
to locate local extrema. Additional control point candidates (re-
lated to inflection points) were found with the second derivative.
These derivative-based methods yield a great number of points in
some cases. To reduce them, we implemented an iterative process
of segmentation and pruning. First, we simulated the reconstruc-
tion with the current set of control points. We then segmented
frequency regions inside individual ERBs that showed high Spec-
tral Distortion (SPD). In these segments, additional points were
inserted at the highest error value of that specific segment. Once
the segmentation is finished, we apply a multi-stage pruning pro-
cess to remove redundant or overly dense points while preserving
reconstruction accuracy. First, a pruning function iterates over the
control points, and for each candidate temporarily removes it and
reconstructs the response on a sampled frequency grid. The re-
sulting reconstruction error is compared to a 1.0 dB threshold and
if the removal does not yield a larger error, the point is pruned.
Next, an ERB pruning step checks the spectral distortion of the
reconstruction. A control point is removed only if the reconstruc-
tion error remains below the 1.0 dB threshold for each ERB. This
control point selection is inspired by the optimal changepoint de-
tection methods described by Killick et al. [19].

2.4. Spline Interpolation and Reconstruction

Spline interpolation was used to reconstruct the complete HRTF
from the calculated control points. We evaluated two reconstruc-
tion methods: 1) cubic spline [20] and 2) piecewise cubic Hermite
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interpolating polynomial (PCHIP) interpolation [16]. Both meth-
ods were compared using the full SONICOM dataset on 42 ERB
bands by comparing the error and SPD of the original HRTF mag-
nitude response and the reconstructed response. We also computed
the mean absolute interaural level difference (ILD) error. In agree-
ment with previous works [2, 21], it was found that the PCHIP
method provided better reconstruction results, so we limit our dis-
cussion to this method only.

3. RESULTS

3.1. Compression ratio

Each original magnitude response was represented using 427 fre-
quency bins (up to 20 kHz), multiplied by 2 channels and 4 bytes
per sample, yields an uncompressed size of 3 416 bytes per HRTF.
The compressed size is obtained by multiplying the number of con-
trol points (both channels) by 2 (frequency and magnitude) and by
4 bytes per value. Using the entire dataset (301 subjects, each
with 793 measurements), the proposed method reaches an average
compression ratio of 4.7:1 (SD = 1.19).

3.2. Spectral Distortion (SPD) and Reconstruction Accuracy

The resulting control points, reconstruction, and error between
original and reconstruction are illustrated in Figure 2. The top
panel of Figure 2 shows the original frequency response (solid
line), the reconstructed frequency response after PCHIP spline in-
terpolation (dashed line), and the calculated control points (black
marks). The bottom panel shows the magnitude error per fre-
quency bin. As shown in this panel, the error never exceeds
±1.0 dB. PCHIP achieves a mean SPD = 0.37 dB (SD = 0.03)
with 97 (SD = 23.4) control points per measurement, while cubic
splines achieve a similar result with slightly more control points
due to overshoot in some regions. Across all measurements, the
reconstruction errors are ≤ 1.0 dB in each ERB ( 42 ), as shown in
Figure 3.
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Figure 2: Magnitude reconstruction of the left channel of subject
P0137 for azimuth θ = 0◦ and elevation ϕ = −30.0◦, showing
the error maintaining the limit of ±1 dB.

The total full-band spectral distortion, averaged over all
238, 693 reconstructions, is 0.334 dB (SD = 0.03). Likewise,
across all 42 ERBs, the reconstruction errors are < 1.0 dB, as
shown in Figure 3.
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Figure 3: Spectral distortion over 42 ERBs across all 238, 693
reconstructions (301 subjects × 793 directions).

3.3. Other results

Interaural level differences were obtained by subtracting the mag-
nitude response of the right channel from that of the left chan-
nel. The ILD error is then calculated by the absolute difference
between the original ILD and the reconstructed ILD. The result-
ing mean absolute ILD error across all measurements is 0.1 dB
(SD = 0.07). Note that error in interaural time differences (ITDs)
cannot be computed with our dataset selection, and that for actual
audio spatialization, we rely on the ITDs provided by SONICOM.

Figure 4 shows the absolute error introduced by the Wiener
filter. On average, this error was of 0.30 dB (SD = 0.05). Re-
garding the number of control points, we were able to remove an
average of 13 and 10 control points for the left and right channel,
respectively. This represents a reduction of about 20%. This re-
sulted in an average of 48, 5 control points for each channel. In
our current implementation, control points for the left and right
HRTF channels are selected independently to best preserve each
channel’s unique spectral cues. Consequently, the average number
of control points differs between channels, resulting in 47 and 50
control points for the left and right channel, respectively.
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Figure 4: Average absolute Wiener filtering error computed as
|Msmooth(f)−Morig(f)|, and averaged across 301 subjects.

3.4. Comparison with other methods

We implement a PCA-based HRTF compression baseline using the
“scikit-learn” (Version 1.6.1) library, following Grijalva et al. [22].
For each measurement, we select the minimal number of princi-
pal components needed to keep full-band spectral distortion below
1.0 dB. Table 1 compares the results of our spline method with this
PCA baseline.
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Table 1: Mean performance comparison of PCA-based compres-
sion versus our spline control point method (301 subjects). Stan-
dard deviation in parenthesis.

Metric PCA Baseline Proposed Method
Compression Ratio 1.58(0.10):1 4.7(1.19):1
full-band spectral distortion 0.273(0.170) dB 0.370(0.030) dB
No. Parameters 120.00(9.00) 97(23.38)
ILD Error 0.011(0.01) dB 0.1(0.07) dB

As shown in Table 1, our method achieves about three times
the compression of the PCA-based method while reducing the con-
trol points (components) by approximately 20%. The proposed
method achieves a slightly higher full-band SPD and ILD errors,
however they remain very low, ensuring faithful spatial cues.

3.5. Computational Performance

All timing experiments were run on Windows 11 using AMD 64
having 8 physical cores and 16 logical cores with up to
3.2GHz and a 16GB of RAM. We compared two process-
ing pipelines over 793 measurements per subject: 1) SOFA
pipeline: HRIR→FFT→complex spectrum; and 2) Control-
point pipeline: control points→PCHIP magnitude reconstruc-
tion→complex spectrum.

The SOFA pipeline achieves a mean computation time of
24µs per measurement (total 18.8ms), while the control point ap-
proach requires approximately 0.171ms (total 135.8ms) respec-
tively. I.e., control point pipeline is 0.14 times slower than the
SOFA pipeline.

4. DISCUSSION

While our proposed method achieves less compression than Aré-
valo and Villegas [7], we present control points that are simple to
manipulate and thus, potentially enabling personalization.

The Wiener filter smoothing reduces unwanted ripples while
preserving important resonances. As mentioned before, spectral-
smoothing techniques have been proposed in the past [23]. We
compared our adaptive Wiener filter against cepstral and frac-
tional octave smoothing on a randomly selected subject. Cep-
stral smoothing produced large local filtering errors (> 20 dB)
in some frequency bins. Similarly, third-octave smoothing intro-
duced absolute errors above the self-imposed 1 dB threshold. Con-
sequently, the Wiener filtering was used instead. For practical spa-
tial audio applications, the reconstruction from this compressed
representation is computationally efficient. The stored control
points are interpolated using PCHIP splines to recover the magni-
tude spectrum. To spatialize sound using our compressed HRTFs,
we convert the dB magnitude to linear magnitude and combine that
with the phase response assumed to be linear [23]. Thus, we can
convolve the reconstructed HRTF with a target sound by spectral
multiplication. Applying an inverse FFT to this yields the spatial-
ized audio.

To provide a better view of the reconstruction performance,
independent of specific hardware, we can replace the raw tim-
ing with the following analysis. Since control points extraction,
segmentation, and pruning are all performed offline, the follow-
ing cost analysis refers only to the decoding (reconstruction) step,
which is the more relevant part. Building the reconstruction with
PCHIP from C control points has O(C). Evaluating it at N

query frequencies requires locating each spline interval (via binary
search) in O(logC), for a total of O(N logC). Converting the N
reconstructed magnitudes into complex-valued spectrum samples
adds O(N). Hence, the composite complexity is

O
(
C +N logC +N

)
= O

(
N logC

)
,

and across all M measurements

O
(
M N logC

)
.

Future work could explore the identification of control points
that are consistent in different spatial locations, which could poten-
tially reduce storage requirements. Additionally, the 1 dB spectral
distortion threshold could be adjusted based on perceptual rele-
vance. E.g., increasing this threshold for frequencies bands where
hearing is less sensitive [24]. In addition, since ERBs model re-
gions where we are unable to discriminate between two frequen-
cies, which makes it possible to further eliminate control points
within the same ERB, and keep only one per band. Furthermore,
the core segmentation and pruning used to select control points
offer additional room for compression. Merging redundant con-
trol points into single representative points whenever their com-
bined interpolation error stays below the thresholds could further
increase the compression. The primary limitation of our approach
is that we did not conduct subjective testing. We will tackle this
limitation in the near future.

5. CONCLUSION

This work presents an efficient and accurate method for re-
constructing HRTFs using optimized control point calculation
combined with PCHIP spline interpolation. Our approach ef-
fectively identifies and preserves spectral features through a
derivative-based process, ensuring reconstruction accuracy con-
sistently within a 1.0 dB error margin across all ERBs. Taking
advantage of critical points and inflection points of the magni-
tude response, we achieve an average compression ratio of 4.7:1
while maintaining full-band spectral distortion of 0.37 with a SD
of 0.030 dB and a mean absolute ILD error of 0.10 and a SD
of 0.070 dB over 238, 693 measurements. Compared to a PCA-
based baseline, the control point representation reduces stored pa-
rameters by approximately 20% for similar perceptual quality.
Although interpolation itself is computationally efficient, further
optimizations in control point calculation and refinement such as
more aggressive pruning, segmentation, and merging, also offer
room for improvement. Beyond compression, the compact control
point format enables the potential of direct manipulation of spec-
tral features for personalized HRTFs.
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