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ABSTRACT

We introduce a novel method for designing attenuation filters in
digital audio reverberation systems based on Feedback Delay Net-
works (FDNs). Our approach uses Second Order Sections (SOS)
of Infinite Impulse Response (IIR) filters arranged as parametric
equalizers (PEQ), enabling fine control over frequency-dependent
reverberation decay. Unlike traditional graphic equalizer designs,
which require numerous filters per delay line, we propose a scal-
able solution where the number of filters can be adjusted. The fre-
quency, gain, and quality factor (Q) parameters are shared parame-
ters across delay lines and only the gain is adjusted based on delay
length. This design not only reduces the number of optimization
parameters, but also remains fully differentiable and compatible
with gradient-based learning frameworks. Leveraging principles
of analog filter design, our method allows for efficient and accu-
rate filter fitting using supervised learning. Our method delivers
a flexible and differentiable design, achieving state-of-the-art per-
formance while significantly reducing computational cost.

1. INTRODUCTION

Feedback Delay Networks (FDNs) are a common technique in ar-
tificial reverberation, used to simulate the reflections found in real
acoustic environments [1, 2]. They are especially used for model-
ing the late reflections of a reverberant field, where their scalable
structure allows an effective balance between computational effi-
ciency and acoustic accuracy. In typical FDNs, attenuation filters
are employed to control the frequency-dependent decay, while the
feedback matrix is designed to be both lossless and colorless [3, 4].
Each feedback path incorporates an absorption filter that gradually
reduces energy over time. By using frequency-dependent filters,
the reverberation decay can be precisely shaped across the spec-
trum, offering perceptually meaningful control over the reverbera-
tion time (T60).

Attenuation filters, also referred to as absorption filters, simu-
late the loss of energy at different frequencies. While early meth-
ods relied on simple low-pass filters [5], more advanced designs
now use graphic equalizers (GEQs) for finer spectral resolution
[6, 7, 8]. Some recent work also explores deep learning approaches
to directly learn IIR filter coefficients [9], but these methods typ-
ically lack a clear mechanism for uniformly controlling the decay
time across all frequency bands. As a result, they may produce fil-
ters with inconsistent spectral decay characteristics, making them
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less suitable for applications where precise and homogeneous re-
verberation control is required. Traditional Graphic Equalizers
(GEQs) present limitations when integrated into Feedback Delay
Networks (FDNs). Their typically limited attenuation range can
result in poor matching within long delay lines. Furthermore, the
inherent characteristics of the bell filters used in GEQs can intro-
duce frequency response mismatches at both DC and Nyquist fre-
quencies, as these filters must reach unity gain at the spectrum’s
edges [10]. The two-stage attenuation filter (TSAF) introduced
in [8] combines a shelving filter with a 31-band GEQ to mitigate
these issues and achieves strong performance with a low relative
T60 error on real-world impulse responses [11]. Although a re-
duced version with 12 bands lowers computational cost, it can
compromise accuracy. Furthermore, the granularity of these meth-
ods is tied to the number of bands per octave, making parametric
equalizers a more computationally efficient alternative. Despite
significant progress, achieving a fully differentiable and trainable
FDN remains a challenge. Prior research has succeeded in opti-
mizing gain values and feedback matrices [4, 12], but attenuation
filters remain difficult to optimize in a differentiable manner [8, 9].
The challenge lies in the high dimensionality of the parameter
space, as each delay line requires multiple filters and there is lack
of a direct mapping between reverberation time and filter coeffi-
cients. Existing approaches often use fixed frequency and Q val-
ues, optimizing only the gain, and require a complex multi-stage
processes. As such, they are not ideal for training in end-to-end
differentiable frameworks. Another practical issue concerns the
accuracy of digital filters across the full audio spectrum. Filter de-
signs based on the bilinear transform, such as those in [13], tend to
lose accuracy near the Nyquist frequency. Improved formulations
like those of [14, 15] and the symmetric shelving design of [16]
help maintain better precision, particularly in the high-frequency
range.

To address these challenges, we propose a method that uses
a variable amount of biquad filters per delay line, structured as
a parametric equalizer with two shelving filters and bell filters.
This setup delivers a magnitude response comparable to the more
complex TSAF with 12 bands while reducing the number of fil-
ters by more than two-thirds. For an 8th-order FDN with a 12-
bands PEQ, our method requires 96 biquads compared to 248 for
a 31-band GEQ. Our system is fully differentiable and supports
optimization through gradient descent, allowing all filter parame-
ters to be trained jointly. This enables efficient and scalable filter
fitting without compromising performance, which is particularly
advantageous in resource-constrained environments such as em-
bedded systems. An implementation of our approach is available
on GitHub 1.

1https://github.com/ilias-audio/iir_match
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2. METHOD

2.1. Parametric Equalizer Design

The parametric equalizer (PEQ) used in this work is scalable. It
consists of three types of second-order filters: bell, low-shelf, and
high-shelf. A typical configuration for digital reverberation is il-
lustrated in Figure 1. The number of bands N and the delay line
lengths m are variable. The first and last filters, H1(z) and HN (z),
are implemented as low-shelf and high-shelf filters respectively,
while the intermediate filters H2(z) through HN−1(z) are bell fil-
ters.

Input Output

z-m HN(z) H1(z)...

N-Bands PEQ

Figure 1: Recursive filter design with an N-band parametric equal-
izer.

Each filter is defined by three parameters: gain G, center fre-
quency fc, and quality factor Q. The gain is expressed in dB and
converted to a linear amplitude factor A as follows:
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We base our analog filter design on the general second-order
prototype:
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In this expression, g∞ is the high-frequency gain, while ωz, Qz

and ωp, Qp define the zeros and poles respectively. Laplace do-
main transfer functions from [17] are used to define the response
of Bell (HB), Low-Shelf (HLS) and High-Shelf (HHS) filters:
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To evaluate the frequency response from the Laplace domain
we substitute s = j 2πf

2πfc
and express the frequency response as a

function of frequency f , with the center frequency fc, linear gain
A, and Q-factor Q as parameters:
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The magnitude response of the full PEQ is obtained by sum-
ming the logarithmic magnitude of each band:

20 log10 |HPEQ(f)| =
N∑
i=1

20 log10 |Hi(f)| (9)

Each filter band thus requires optimization over three parame-
ters. The analog prototype is converted to a digital filter using the
method in [14].

Following the approach of Prawda et al. [3], we model the
attenuation response to scale with the delay line length in samples.
The target magnitude for a given delay line k of length mk and
sample rate fs becomes:

20 log10 |HPEQk (f)| =
−60mk

T60(f) fs
(10)

This relation ensures that all filters can share a common set of
parameters while scaling the gain according to delay line length.
We define the slope as:

γ(f) =
−60

T60(f)
(11)

and the corresponding gain per delay line is:

G(f) =
γ(f) mk

fs
(12)

Using this formulation, the PEQ can be shared across all delay
lines with only the gain scaling changing, significantly reducing
the number of parameters.

2.2. Parameter Optimization

To optimize the filter parameters, we frame the task as supervised
regression. The objective is to match the frequency-dependent tar-
get magnitude derived from a desired T60(f). The loss function
is the mean squared error (MSE) between the target and the PEQ
response:

MSE =
1

N

N∑
i=1

(
−60mi

T60(f) fs
− 20 log10 |HPEQ(f)|

)2

(13)

We implement the full model in PyTorch, where each filter
band is differentiable and parameterized by frequency, gain, and
Q-factor. Optimization is performed with the Adam optimizer
[18], using an initial learning rate of 0.1 and 10,000 iterations.
These values are empirical but provide enough iterations for com-
plex cases with more than 12 bands.

At each step, gradients are computed with respect to all pa-
rameters via backpropagation, allowing efficient training of the
full PEQ. The use of shared parameters across delay lines ensures
scalability and enables the application of our method even in em-
bedded systems.

Finally, we validate the method using a dataset of 1000 RIRs
[11], following the evaluation protocol from [8], and compare it
against state-of-the-art approaches.
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Figure 2: Reverberation time relative error of three different PEQ
designs applied to a 1000 RIR reverberation time measurements
dataset with a distribution of different delay lengths.

3. RESULTS

3.1. Reverberation Time Evaluation

We evaluated the precision of our parametric equalizer designs
against a dataset of measured room impulse responses (RIR) in
a variable acoustics environment [19]. The reverberation times are
estimated in third-octave frequency bands over 31 bands. A sub-
set of 1000 RIRs is used, following a comparable method to the
one exposed in [8]. We linearly interpolate the 31 bands of RIR
measurements to 512 logarithmically spaced points between DC
and Nyquist. Our approach is tested by randomly generating delay
line lengths between 0.01 and 0.3 seconds to emulate the behavior
of different types of rooms and halls. This strategy also allows for
evaluation against a wide range of attenuation filter combinations,
where, for example, an increase in delay corresponds to greater
attenuation. Each test case involved matching the frequency de-
pendent reverberation time (T60(f)) with the optimized magni-
tude response of the filter converted back to a reverberation time
(T̂60(f)).

T60, error =
T60(f)− T̂60(f)

T60(f)
× 100%. (9)

We calculate the error T60,error for each point of the interpo-
lated dataset and for each of the 1000 reverberation time estima-
tions. This effectively means we evaluate the error against 512,000
data points. We then use this relative error to determine the error
distribution (Figure 2), observing that high levels of inaccuracy are
avoided. For instance, the smallest equalizer (EQ) yields an inac-
curacy within ±25%.12 bands PEQ shows a narrow distribution
of the error centered around zero. Adding more bands makes the
resulting frequency reverberation time attenuation more accurate.

In Figure 3, even with as few as 4 bands, the model captures
the general trend of the target magnitude curve. Increasing the
number of bands to 8 and 12 further reduces the spread of the error,
bringing the performance close to that of the state-of-the-art Two-
Stage Attenuation Filter (TSAF) with 31 bands. This highlights the
effectiveness of our differentiable approach in capturing complex
reverberation behavior with far fewer filters.

Figure 3: Magnitude response accuracy for different PEQ designs
based on the dataset median reverberation time at each frequency.

3.2. Attenuation Filter Magnitude Accuracy

To assess the fidelity of the frequency response, we measured the
deviation between the optimized equalizer response and the me-
dian target T60 curve across the dataset. We used a delay line of
100 milliseconds and a sampling rate of 48kHz. Figure 3 displays
the achieved magnitude response for various PEQ configurations.

The results show that even low-order designs (e.g., 4 or 8
bands) provide a smooth and perceptually relevant approximation
of the target response. The 12-band PEQ closely tracks the tar-
get curve, exhibiting only minor deviations, and is nearly indistin-
guishable from the target.

Type MSE(x, x̂) MAE(x, x̂) OP P

PEQ4 4.8× 10−2 6.3× 10−1 36 12
PEQ8 7.3× 10−3 4.1× 10−1 72 24

PEQ12 1.7× 10−3 2.2× 10−1 108 36
TSAF31 1.9× 10−3 1.2× 10−1 284 33

Table 1: Magnitude Mean-Squared Error (MSE) and Maximum
Absolute Error (MAE) in dB between the target response (x) and
the predicted response (x̂) using N-band PEQs and the 31-band
TSAF. OP denotes the number of arithmetic operations, and P the
number of trainable parameters.

Quantitative metrics are presented in Table 1, comparing the
Mean Squared Error (MSE), Maximum Absolute Error (MAE),
and computational cost (additions and multiplications, noted as
OP) for each method using the same delay length and sampling
rate. Additionally, P represents the number of trainable parame-
ters, providing insight into the complexity and memory footprint
of each configuration. Our proposed 12-band PEQ achieves a sim-
ilar MSE to the TSAF while using only 38% of the operations
and maintaining a comparable number of parameters (36 for our
approach and 33 for TSAF31), indicating a favorable balance be-
tween performance, computational efficiency, and model size for
the proposed architecture. These findings confirm that our differ-
entiable PEQ design offers a balance between performance and
complexity, making it suitable for real-time applications.
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4. CONCLUSIONS

We presented a simple and efficient method for designing atten-
uation filters in Feedback Delay Networks using a differentiable
parametric equalizer framework. Our approach uses fewer filters
than traditional methods while maintaining comparable accuracy
and stability, making it well-suited for real-time and embedded
applications. By optimizing the filters with gradient descent and
working on continuous target curves, we avoid the need for com-
plex neural networks.

Future work should explore integrating this method into a com-
plete FDN architecture and evaluate its effectiveness using biquad
coefficients. This would help assess its performance in realistic au-
dio processing pipelines and confirm its suitability for end-to-end
optimization tasks.
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