
Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

PIANO-SSM: DIAGONAL STATE SPACE MODELS FOR EFFICIENT MIDI-TO-RAW
AUDIO SYNTHESIS

Dominik Dallinger, Matthias Bittner, Daniel Schnöll, Matthias Wess and Axel Jantsch

Christian Doppler Laboratory for Embedded Machine Learning
TU Wien

Vienna, Austria
firstname.lastname@tuwien.ac.at

ABSTRACT

Deep State Space Models (SSMs) have shown remarkable per-
formance in long-sequence reasoning tasks, such as raw audio
classification, and audio generation. This paper introduces Piano-
SSM, an end-to-end deep SSM neural network architecture de-
signed to synthesize raw piano audio directly from MIDI input.
The network requires no intermediate representations or domain-
specific expert knowledge, simplifying training and improving ac-
cessibility. Quantitative evaluations on the MAESTRO dataset
show that Piano-SSM achieves a Multi-Scale Spectral Loss (MSSL)
of 7.02 at 16kHz, outperforming DDSP-Piano v1 with a MSSL of
7.09. At 24kHz, Piano-SSM maintains competitive performance
with an MSSL of 6.75, closely matching DDSP-Piano v2’s re-
sult of 6.58. Evaluations on the MAPS dataset achieve an MSSL
score of 8.23, which demonstrates the generalization capability
even when training with very limited data. Further analysis high-
lights Piano-SSM’s ability to train on high sampling-rate audio
while synthesizing audio at lower sampling rates, explicitly link-
ing performance loss to aliasing effects. Additionally, the pro-
posed model facilitates real-time causal inference through a cus-
tom C++17 header-only implementation. Using an Intel Core i7-
12700 processor at 4.5GHz, with single core inference, allows syn-
thesizing one second of audio at 44.1kHz in 0.44s with a work-
load of 23.1GFLOPS/s and an 10.1µs input/output delay with the
largest network. While the smallest network at 16kHz only needs
0.04s with 2.3GFLOP/s and 2.6µs input/output delay. These re-
sults underscore Piano-SSM’s practical utility and efficiency in
real-time audio synthesis applications.

1. INTRODUCTION

Synthesizing the sound of physical instruments plays a crucial role
in modern music creation. It is an important component in the evo-
lution of music composition and production. However, compared
to other domains, synthesizing audio remains a challenging task
due to the complex dynamics of audio sound waves. Additionally,
high sampling rates force synthesizers to be computationally effi-
cient in order to comply with real-time constraints, such as action-
sound latencies above 10 ms, might already be disturbing [1].

Over the last years, we have seen a trend of generative neural-
network-based music generation. Especially Differentiable Digital
Signal Processing (DDSP) [2] based methods seem promising by

Copyright: © 2025 Dominik Dallinger et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution 4.0 International Li-

cense, which permits unrestricted use, distribution, adaptation, and reproduction in

any medium, provided the original author and source are credited.

implementing traditional synthesizers and digital signal process-
ing operations as differentiable layers controlled by deep neural
networks. To fit within music creation frameworks a couple of
works [3, 4] adopted the DDSP approach to work with Musical
Instrument Digital Interface (MIDI) input. For the specific task of
MIDI to raw piano performance synthesis Cooper et al. proposed
Piano-TTS [5] by using text-to-speech (TTS) models. Renault et
al. proposed DDSP-Piano v1 [6] and v2 [7] extending the DDSP
framework to handle polyphonic input. They motivate their model
architecture based on high-level modeling knowledge, including
several sub-models dealing with specificities of the piano sound,
such as partials, inharmonicity, and beating. So far, there is no
existing work that proposes an approach without explicitly using
pre-domain knowledge included during architecture design.

Learning the filter parameters of causal Linear Time Invari-
ant (LTI) filters with an Infinite Impulse Response (IIR) in the
discrete-time domain is not new. Moreover, comparing the sim-
plest form of a Recurrent Neural Network (RNN), the Elman Net-
work, with a discrete LTI State Space Model (SSM) representation,
the only difference lies in the non-linear hidden state recurrence
and the bias units [1]. Recently there has been an advent of deep
neural networks modeled as continuous time SSMs, along with ar-
chitectures like the S4 model [8], and its variants (DSS, S4D, S5
etc.) [9, 10, 11]. They show remarkable results on raw audio clas-
sification, raw audio generation [12], as well as long-range reason-
ing tasks, where vanilla RNNs struggle. RNNs are known for their
computational efficiency. They have constant memory and compu-
tational costs that scale linearly O(T) with the sequence length T .
The efficiency of deep continuous time SSMs at inference time is
equivalent to vanilla RNNs by materializing the discrete variant of
the LTI systems’ differential equations [8]. Modeling parameters
in continuous time and applying discretization rules, motivated by
modern control systems, allows for switching the discrete dynam-
ics. This allows for training the network with a high sampling rate,
then switching to a lower sampling rate for inference if wished or
necessary due to the computational limitations of the target com-
puting platform.

Motivated by the recent advances of deep SSM based sequence
models, and their good performance on raw audio sequence mod-
eling tasks we propose Piano-SSM, a simple end-to-end trainable
MIDI to raw piano audio synthesis neural network architecture
based on diagonal deep SSMs, along with the following contri-
butions:

• End-to-end MIDI-to-Raw Audio Synthesis with SSMs.
Piano-SSM only consists of four SSM layers and a sin-
gle linear layer. The first SSM layer directly processes
MIDI inputs, and the linear layer generates raw piano au-
dio. For training Piano-SSM models we propose STFT-

DAFx.1

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

Mel-Mean Loss (SMML). This audio-focused loss is com-
bined of a Short-Time Fourier Transform (STFT) Loss, a
Mel-STFT Loss, and a raw audio Mean Loss. The perfor-
mance of Piano-SSM is evaluated on two existing bench-
mark datasets MAESTRO [13] and MAPS [14].

• Variable Synthesis Sampling Rate.
We show Piano-SSM’s ability to be trained on audio data
with a high sampling rate while generating audio at lower
sampling rates and connect the performance loss to aliasing
effects. We evaluate the performance of models trained on
different sampling rates in combination with down-sampled
models on the MAESTRO dataset.

• Efficient Autoregessive Causal Inference.
The discrete version of Piano-SSM can be seen as multiple
IIR filters stacked with nonlinearities and allows for fast
causal autoregressive audio synthesis. Based on a custom
C++17 header-only implementation we show the real-time
capabilities on an Intel Core i7-12700 Processor.

The rest of the paper is organized as follows: Section 2 presents
related work in the context of deep SSMs, approaches for pianosyn-
thesis, and MIDI-audio paired piano datasets. Section 3 outlines
the Piano-SSM architecture and the loss function used for train-
ing. Sections 4 – 6 show the experimental setup and results for
two benchmark datasets MAESTRO and MAPS. Audio samples1

and the source-code2 are provided online.

2. BACKGROUND AND RELATED WORK

2.1. Deep State Space Models

Compared to standard RNNs, SSMs use a linear hidden state recur-
rence, which enables efficient, parallel computation via associative
scan [11]. To form a universal function approximators, individual
SSM layers are paired with nonlinearities [15]. Setting the foun-
dation for good performance on long-range reasoning tasks, where
RNNs struggle, Gu et al. proposed the HiPPO framework [16] for
structured initialization of SSM layers. The resulting S4 layer is
modeled using multiple Single Input Single Output (SISO) sys-
tems. The SISO approach allows for training in the frequency do-
main [8]. To improve training and inference speed, several authors
proposed diagonal approximations of the state transition matrix
initializations, resulting in S4D [9], DSS [10], the first diagonal
Multi Input Multi Output (MIMO) version S5 [11].

The results for raw audio generation with architectures like
SaShiMi [12], and the good performance on raw audio classifica-
tion with models such as S4D and S5 show that SSM based archi-
tectures are good at processing raw audio samples. We therefore
consider applying a SSM based neural network architecture for
solving the challenging task of raw piano audio synthesis.

2.2. Methods for Piano Synthesis

Raw audio synthesis is a challenging task due to the complex dy-
namics of audio sound waves. As stated by Hayes et al. [1], piano
synthesis can be categorized into four categories:
Physical model-based piano synthesis aims to accurately simu-
late the behavior of musical instruments by formulating and solv-
ing equations that model physical phenomena such as motion, en-

1Audio Samples https://domdal.github.io/piano-ssm-samples/
2Github Repository https://github.com/domdal/piano-ssm

ergy propagation, and sound radiation. Due to the complexity of
piano acoustics, physical modeling remains an active research field
requiring deep expertise.
Signal model-based piano synthesis refers to techniques that gen-
erate sound by explicitly modeling the physical or mathematical
properties of the underlying signal. Developing and fine-tuning
such models requires expert knowledge involving complex mathe-
matical formulations and signal-processing techniques.
Concatenative model-based piano synthesis is widely used in
digital pianos. It involves mapping MIDI inputs to recorded note
samples across different pitches, velocities, and playing styles,
with interpolation to fill in missing variations. At the same time,
this method provides high sound quality due to using real record-
ings, but it struggles to replicate complex polyphonic interactions
like sympathetic resonance in pianos.
Neural Network model-based piano synthesis utilizes deep learn-
ing models to generate realistic piano sounds by learning com-
plex mappings between input data and audio waveforms. Unlike
traditional methods, these models do not rely on explicit signal
processing or physics-based equations but instead learn patterns
from large-scale datasets. However, they require extensive training
data and high computational power and often struggle to capture
complex dynamics. Recent research has tackled these challenges
by exploring various neural architectures and training techniques.
Dong et al. [17] introduced a novel system that adapts text-to-
speech techniques to generate music performances from unaligned
polyphonic scores utilizing a transformer-based encoder-decoder
model. Cooper et al. [5] compared TTS configurations utiliz-
ing Tacotron 2 [18] as an acoustic model and neural source fil-
ter (NSF) [19] as waveform models. Shi et al. [20] expanded on
this work by evaluating several configurations, including Tacotron
and TransformerTTS [21] as waveform models, NSFs, and HiFi-
GAN [22] as an acoustic model, introducing joint training to min-
imize feature mismatch. Additionally, Renault et al. presented
a more complex approach requiring expert piano knowledge with
DDSP-Piano v1 [6], which combines a signal-based model and a
neural network-based model tailored explicitly for piano synthe-
sis. Subsequently, Renault et al. developed DDSP-Piano v2 [7],
integrating a new Differential Feedback Delay Network [23] to im-
prove audio quality while optimizing for fewer parameters.

However, there is still a lack of neural network approaches that
rely on a minimum of domain-specific expert knowledge during
architecture design and training. As well as networks enabling
real-time synthesis with the possibility of varying the synthesis
sampling rates.

2.3. Piano Datasets

MAESTRO – MIDI and Audio Edited for Synchronous Tracks
and Organization (MAESTRO) v3.0.0, introduced by Hawthorne
et al. [13], is a dataset that contains paired MIDI data and high-
quality audio recordings. The recordings are made with a Yamaha
Disklavier during the International Piano-e-Competition and in-
clude 198.7 hours of sub-millisecond aligned MIDI and audio data.
It is split into 159.2 hours of training data and 20.4 hours of test
data. The audio is provided in 44.1 kHz, 16-bit PCM stereo format.
Additionally, the dataset includes ten different recording years,
containing different room acoustics and recording environments.
MAPS – MIDI Aligned Piano Sounds (MAPS), introduced by
Emiya et al. [14], is a widely used piano database for multi-pitch
estimation and automatic piano transcription. It consists of ∼65

DAFx.2

https://domdal.github.io/piano-ssm-samples/
https://github.com/domdal/piano-ssm

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

hours of MIDI-annotated piano recordings (44.1-kHz, 16-bit stereo)
from both acoustic and software-based pianos, which are split into
four sections each: ISOL set (isolated notes and monophonic ex-
cerpts), RAND set (chords with random pitch notes), UCHO set
(usual chords from Western music), MUS set (pieces of piano mu-
sic). This work uses the recordings using a Yamaha Disklavier
Mark III in two distinct recording conditions, Ambient and Close.
Since MAPS does not provide a predefined train-test split, the sec-
tions ISOL, RAND, and UCHO sets are used for training, and the
MUS set is used for testing.

copy features

MIDI input

Raw Audio
Output

Linear

88 x sample length

88 x sample length

60 x sample length

40 x sample length

20 x sample length

1 x sample length

88 x midi length

Trainable
Skip

Activation

++

+ +

update

SSM

Sequence
Layer

MIDI Input Raw Audio Output

Sheet Music

Figure 1: The Piano-SSM architecture. The model processes 88
MIDI input channels, which are progressively reduced through
SSM layers to 20 latent dimensions. A final linear layer maps this
representation to a single raw audio output channel.

3. DIAGONAL STATE SPACE MODELS FOR RAW
PIANO AUDIO SYNTHESIS

This work proposes Piano-SSM, a multilayer SSM for the task
of MIDI to raw audio waveform synthesis for real piano perfor-
mances. The neural network architecture design enables end-to-
end training without specific expert knowledge and utilizes a loss
function combined of STFT, Mel-STFT, and Mean Loss. The ap-
proach allows for fast autoregressive synthesis and the SSM design
also allows for synthesizing audio at different sampling rates.

3.1. Piano-SSM

Model Design – Piano-SSM builds up on the S-Edge [24] layer,
which is modeled as a complex-valued continuous time MIMO
LTI system,

˙̃x(t) = Ãx̃(t) + B̃u(t) + b̃

y(t) = ℜ(C̃x̃(t) + c̃),
(1)

with the complex-valued hidden state x̃(t) ∈ CH, a diagonal state
matrix Ã=diag(λ̃)∈CH×H with the diagonal elements λ̃∈CH

directly representing the complex eigenvalues. The input matrix
B̃∈CH×Y, the input bias b̃∈CH , the output matrix C̃∈CO×H,
and the output bias c̃ ∈ CO are also complex valued. The inputs
u and outputs y of an individual SSM layer are considered to be
real-valued. Compared to S5-like representations we add bias units
and allow for variable input and output dimensions. Addition-
ally instead of modeling the eigenvalues in cartesian coordinates
λ̃ = α+jβ , we represent and optimize them in the polar coor-
dinate form with log-norm r and angle ϕ. Specifically, we model
the eigenvalues with λ̃ = er+jϕ, which optimizes the norm in log-
space. In order to ensure exponential stability we constrain the real
part of the eigenvalues to be negative with ℜ(λ̃) = -abs(ℜ(λ̃

′
)).

MIMO SSM structures like S5, by default, apply a trainable mul-
tiplicative time scale parameter ∆ to each eigenvalue. Since in
cartesian coordinates, this has the effect of scaling the norm, we
neglect it, as we already optimize on the norm.
During training and inference, we need to map the continuous time
representation to the discrete version. The Piano-SSM layer does
this with Zero Order Hold (ZOH). Due to the diagonal implemen-
tation of the state transition matrix discretization can be performed
efficiently on an elementwise basis,[

B̃d b̃d

]
= diag

(
λ̃

–1
◦ (λ̃d − 1)

) [
B̃ b̃

]
,

λ̃d = eλ̃Ts , C̃d = C̃, c̃d = c̃.

(2)

By adjusting the sampling time (Ts), the discrete SSM layers can
operate at different effective sampling rates, which means we can
train or network with, an original sampling rate ftrain and then
switch the system dynamics to generate audio with a lower sam-
pling rate fsynth., by setting Ts = ftrain/fsynth.
The forward path of the discrete SSM is then defined by,

x̃k = λ̃d ◦ x̃k−1 + B̃duk + b̃d,

yk = ℜ(C̃dx̃k + c̃d)

Output = Skip(uk) + Activation(yk),

(3)

where Skip ∈RO×Y is a trainable real-valued matrix enabling our
MIMO SSM layer to have different input and output sizes. The
number of parameters for the discrete representation follows with,

Total Parameters = 2YH︸ ︷︷ ︸
B̃

+2OH︸ ︷︷ ︸
C̃

+ YO︸︷︷︸
Skip

+4H +O︸ ︷︷ ︸
λ̃d, biases

. (4)

Figure 1 outlines the general structure of the proposed Piano-SSM
architecture. It consists of six layers,

• Layer 1: Upsamples the MIDI features from midi rate to
the audio sampling rate by ZOH.

• Layer 2: A single SSM Layer without a skip connection
with 88 input and 88 output channels.

• Layer 3-5: Three stacked SSM layers (with Skip), reducing
intermediate output channels from 88 to 20.

• Layer 6: A final fully connected linear layer reducing the
last 20 channels to a single audio output channel.

For our experiments, we define three different Piano-SSM con-
figurations (XL, L, S), which only differ in their internal state sizes
H. The biggest configuration Piano-SSM XL with H = 256,
and 268.4k parameters. A large configuration Piano-SSM L with

DAFx.3

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

H = 128, and 142.4k parameters. The smallest configuration
Piano-SSM S with H = 64, and only 79.4k parameters. As an
activation function, we use Tanh().
Model Interpretability – Theory stemming from linear control
theory allows for analyzing dynamics of LTI systems. Piano-SSM
can be seen as multiple linear IIR filters stacked with nonlineari-
ties. For interpretability purposes, we only analyze the linear as-
pects within each layer. Due to the diagonal representation of our
continuous time SSM layers the solution of the autonomous sys-
tem (neglecting bias units and inputs) results in

x̃(t) = eλ̃t ◦ x̃0=eαt
(
cos(βt) + jsin(βt)

)
◦ x̃0, (5)

where x̃(t) describes the temporal evolution of the states/memory
based on an initial condition x̃0, with the learned eigenvalues in
cartesian coordinates λ̃=α+jβ. This representation shows how
to interpret the learned state dynamics within each individual layer.
The real parts of the learned complex eigenvalues give informa-
tion about the exponential decay time constants τ =1/(αr · ftrain).
Smaller time constants result in faster state/memory decay. The
frequencies f =(β · ftrain)/2π can be used to analyze the oscilla-
tion contained in the state evolution. Analyzing the eigenvalues in
continuous time representation can give valuable insights into the
learned dynamics for each individual layer. However, in the end,
we discretize the continuous time SSM layers to get the autore-
gressive discrete inference model. Mapping from continuous to
discrete can introduce aliasing effects, which also might alter the
discrete dynamic behavior. Of special concern are those frequen-
cies f (imaginary parts of eigenvalues) violating the Nyquist [25]
criteria f > fsynth/2. In Section 5.2 we show experiments for
training networks with a high sampling rate and synthesizing au-
dio with a lower sampling rate fsynth < ftrain. We see that the
number of aliased eigenvalues (imaginary parts violating Nyquist)
correlates with the error induced due to discretization (see Table 3).

3.2. Audio Loss Functions

Classical point-wise loss functions such as L1-Loss (Mean Abso-
lute Error) or L2-Loss (Mean Squared Error), often used to train
sequential regression tasks, are not very good at capturing spec-
tral details of raw audio signals due to their limitation in capturing
perceptual differences. Moreover, two perceptually identical au-
dio signals can still produce a high loss due to small phase shifts.
This limitation motivates the use of spectral-based loss functions.
Within our work, we use the Multi Scale Spectral Loss (MSSL), in-
troduced by Engel et al. [2], as a metric for comparing synthesized
audio with the real ground truth. Besides using this evaluation
metric, we propose SMML for training our Piano-SSM. SMML is
combined of a point-wise raw audio Mean Loss, the STFT Loss,
and a Mel-STFT Loss. MSSL and SMML are briefly outlined in
the following two subsections.

Multi Scale Spectral Loss

MSSL, introduced by Engel et al. [2], aims to better align with the
human auditory perception. The loss is computed by the STFT
with multiple sampling rate fs dependent Fast Fourier Transform
(FFT) window sizes wfs,i as follows,

MSSL =
∑
i

∥∥∥|Xi| − |Yi|
∥∥∥
1
+

∥∥∥log |Xi| − log |Yi|
∥∥∥
1
. (6)

The loss is calculated as the L1 difference between the magnitude
spectrograms of predictions |Xi| and targets |Yi|, along with the
L1 difference between their logarithmic representations. Both |Xi|
and |Yi| are obtained by applying the STFT with a 75% overlap
and a Hann window function. ∥ · ∥1 states the L1 norm. The
window sizes wfs,i have to be adapted to the sampling rates. As
an example, for 16 kHz we define the window sizes as follows:

w16k,i ∈ {4096, 2048, 1024, 512, 256, 128, 64}

This multi-scale approach effectively captures spectral differences
across various frequency resolutions and is commonly used to eval-
uate the quality of synthesized raw piano audio [1, 6].

STFT-Mel-Mean Loss

SMML combines three equally weighted loss terms to effectively
capture different spectral properties of an audio signal. With SMML
we aim to provide a balanced trade-off between frequency and
time resolution while enhancing the stability of the neural network
training. Initial experiments using MSSL as a loss function for
our Piano-SSM revealed convergence issues. Consequently, we
propose SMML as a more robust alternative to MSSL. The loss
function is composed of the following three terms:
1. STFT Loss =

∥∥∥|X| − |Y |
∥∥∥
1
, with |X| and |Y | being the mag-

nitude spectrograms of the predicted and ground truth audio sig-
nals, obtained using STFT.

• Covers the full frequency spectrum up to the Nyquist [25]
limit, with an FFT size equal to the sampling rate.

• A large window size improves frequency resolution but re-
duces time resolution (1s window, 100ms hop size).

2. Mel-STFT Loss =

∥∥|Ymel|−|Xmel|
∥∥

F∥∥|Ymel|
∥∥

F

+
∥∥log |X| − log |Y |

∥∥
1
.

|Xmel| and |Ymel| are the corresponding Mel-scaled STFT magni-
tudes, ∥ · ∥F is the Frobenius norm. Mel-STFT Loss was intro-
duced by Steinmetz et al. [26].

• Mel-Scaling compresses high and expands low frequencies
to approximate human hearing.

• A smaller window (46ms window, 5.8ms hop size) improves
temporal resolution, making the loss sensitive to transient
structures and fine timing differences.

3. Mean Loss = E
[
E[x]2 − E[y]2

]
, where x and y are the pre-

dicted and ground truth audio signals.

• Ensures no drift towards a negative or positive mean.

4. EXPERIMENTAL SETUP

We perform experiments on MAESTRO [13] and MAPS [14] to
evaluate our proposed Piano-SSM models. Table 1 show the train
and test split audio durations in hours for the individual dataset
configurations used during training and evaluation. We train our
models in PyTorch and use the Adam optimizer with a learning rate
of 1e−4 and a weight decay of 1e−4. The learning rate is dynam-
ically adjusted using a cosine annealing schedule with a warmup
phase, following the approach of Katsura et al. [27]. This sched-
uler enhances training stability by gradually increasing the learn-
ing rate during the warmup phase before transitioning into a cosine

DAFx.4

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

Dataset Split Total Duration

MAPS Close Train 2.3 hours
Test 3.5 hours

MAPS Ambient Train 2.1 hours
Test 3.4 hours

MAESTRO Train 159.2 hours
Test 20.4 hours

Table 1: Total duration of datasets used for training and evaluation.
MAPS datasets train on isolated notes and chords and evaluate on
pieces of piano performances, while MAESTRO datasets contain
complete piano performances for both training and evaluation

Model Parameters Model Parameters

Piano-TTS v1 [5] 31.4M Piano-TTS v2 [20] 31.5M
- Tacotron-2 [18] 30.6M - Transformer-TTS [21] 17.6M
- NSF [19] 736.3k - HiFi-GAN [22] 13.9M

DDSP-Piano v1 [6] 512.5k DDSP-Piano v2 [7] 344.5k
- Sub-models 281.5k - Sub-models 341.5k
- Tuning Models 33 - Tuning Models 70
- Reverb 240k - FDN Reverb [23] 2820

Piano-SSM XL (H = 256) 268.4k
Piano-SSM L (H = 128) 142.4k
Piano-SSM S (H = 64) 79.4k

Table 2: Model parameters for Piano-TTS, DDSP-Piano, and
Piano-SSM (this work). Numbers for DDSP-Piano and Piano-TTS
models are taken from Renault et al. [7].

decay pattern with periodic restarts. Training on the MAESTRO
dataset needs 50 epochs, with a sample size of 50,000 samples per
epoch. After training the models are finetuned using MSSL for 20
epochs with a learning rate of 2e−5. When training on the MAPS
dataset, we use a single linear output layer. Instead, when training
our Piano-SSM on the MAESTRO dataset we employ a distinct
linear layer per year, ensuring model adaptability across different
years. All Piano-SSM models are trained using SMML Loss with
a 4 second sample length and evaluated using the MSSL Loss with
a 10 second sample length to ensure comparability to the DDSP-
Piano models, which are also evaluated using a 10 second audio
samples. The window sizes for MSSL are scaled accordingly to
the sampling rate fs, wfs,i=

sr
16kHzw16k,i. As an example, training

the Piano-SSM XL model on audio with a sampling rate of 24kHz
requires 116 hours of training on a single NVIDIA A100 80GB
GPU for the MAESTRO dataset. The training setup, in general,
uses a batch size of 8 and a sample length of 4 seconds.

For initializing the individual SSM layers we consider the fol-
lowing strategy. The H independent eigenvalues λ̃ are initialized
with a linear interpolation between 0 and H/2 with H steps for
the imaginary parts and -0.5 for the real part and then elementwise
scaled which ∆, where ln(∆) is initialized uniformly in the do-
main of [ln(0.001), ln(0.1)]. B̃ and C̃ are initialized orthogonally
with a gain of

√
1/3. The real and imaginary parts are initialized

separately. The input b̃ and output c̃ biases are uniformly [0, 1]
initialized for both real and imaginary parts. Accordingly, we also
scale B̃, b̃ with the time scale parameter ∆.

16
kH

z
1

2

3

4

5

6

7

8

7.09 7.02
7.21

7.47

M
SS

L

24
kH

z

6.58
6.75 6.84

7.1

DDSP-Piano v1 DDSP-Piano v2 Piano-SSM XL Piano-SSM L Piano-SSM S

44
.1

kH
z

6.42
6.6 6.59

Figure 2: Comparison of MSSL values (lower is better) for Piano-
SSM XL, L, S and DDSP-Piano models across different synthesis
sampling rates. The Piano-SSM models were trained separately at
each sampling rate, while DDSP-Piano v1 was trained at 16 kHz,
and DDSP-Piano v2 at 24 kHz.

5. EXPERIMENTAL EVALUATIONS MAESTRO

We compare Piano-SSM XL with DDSP-Piano v1 [6] & v2 [7] on
the MAESTRO v3.0.0 dataset [13] and evaluate the performance
when training with audio data at different sampling rates such as
16kHz, 24kHz, and 44.1kHz (see Section 5.1).

Furthermore, we evaluate the Piano-SSM model’s ability to
train it on a high sampling rate and switch to a lower sampling
rate for generation/synthesis. Without a need for retraining, this
is achieved by changing the sampling rate Ts = ftrain/fsynth. of
all SSM layers when mapping from the continuous to discrete rep-
resentation. Switching system dynamics introduces only a small
loss in performance (see Section 5.2) but allows for faster audio
generation if computational resources are limited (see Section 7).

5.1. Baseline Comparison

Table 2 shows parameter counts for state-of-the-art audio synthe-
sis models and our three Piano-SSM configurations (XL, L and S,
which only differ in the SSMs state sizes H). Piano-SSM is sub-
stantially smaller compared to the Piano-TTS models [20, 5], even
in its largest configuration (Piano-SSM XL); it is slightly smaller
than DDSP-Piano v1 and v2, while achieving similar synthesis
quality (see Figure 2). Unfortunately we were not able to resynthe-
size or get access to raw audio files for Piano-TTS. Nevertheless,
Piano-TTS parameter count is 117× Piano-SSM XL parameter
count, and DDSP-Piano already outperformed TTS-Piano. There-
fore, we only compare ourselfs with DDSP-Piano. For DDSP-
Piano v1 & v2, we were able to resynthesize audios based on the
code provided by the authors. We used this synthesized audio for
evaluation.

The models are evaluated using the MSSL on different syn-
thesis sampling rates. Figure 2 shows the MSSL scores for Piano-
SSM and the DDSP-Piano v1 and v2 models. DDSP-Piano v1 was
trained at 16kHz, while DDSP-Piano v2 was trained at 24kHz.
In contrast, Piano-SSM was trained separately at each sampling
rate to achieve a fair comparison, as the MSSL has a decreasing
trend at higher sampling rates. The results indicate that Piano-

DAFx.5

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

Figure 3: Frequencies f=(β · ftrain) / 2π over exponential decay time constants τ =1/(αr · ftrain) for all eigenvalues λ̃=α+jβ across
the layers of the Piano-SSM XL models trained on MAESTRO. Each point represents an eigenvalue in a specific layer, highlighting the
learned dynamics. Smaller time constants τ indicate faster decay of internal states/memory.

SSM XL maintains comparable synthesis quality to DDSP-Piano
v1 and v2 while being more parameter-efficient and has a con-
siderably simpler network architecture, which requires no expert
knowledge about pianos.

5.2. Variable Synthesis Sampling Rates

1624
44
.1

6.4

6.6

6.8

7

7.2

7.4

Synthesis Sampling Rate (kHz)

M
SS

L

MSSL vs Synthesis Sampling Rate

XL 44.1kHz
XL 24kHz
XL 16kHz

L 44.1kHz
L 24kHz
L 16kHz
S 44.1kHz
S 24kHz
S 16kHz

Figure 4: Comparison of MSSL values for different synthesis sam-
pling rates (16 kHz, 24 kHz, and 44.1 kHz) of models trained and
evaluated on the MAESTRO dataset. The plot shows results for
three Piano-SSM model variants: XL (solid), L (dashed), and S
(dotted). Each model variant was trained separately at 16kHz (),
24kHz (), and 44.1kHz (). Lower MSSL values indicate better
performance, with a general trend of increasing MSSL as the syn-
thesis sampling rate decreases.

Here we show the effects of the Piano-SSM model’s ability to
synthesize audio at variable sampling rates. We evaluate the mod-
els trained at a high sampling rate and compare their MSSL when
synthesizing audio at lower sampling rates. Specifically, we exam-
ine the effect of training at 44.1 kHz and synthesizing with 24 kHz

Config. Train SR Test SR Aliased MSSL
[kHz] [kHz] Eigenvalues Error

XL 44.1 24.0 13.09% (134/1024) 11.77%
XL 44.1 16.0 31.64% (324/1024) 16.55%
XL 24.0 16.0 11.23% (115/1024) 10.73%
L 44.1 24.0 6.64% (34/512) 6.77%
L 44.1 16.0 15.23% (78/512) 11.86%
L 24.0 16.0 6.64% (34/512) 7.21%
S 44.1 24.0 0.78% (2/256) 10.37%
S 44.1 16.0 2.34% (6/256) 13.38%
S 24.0 16.0 1.56% (4/256) 5.93%

Table 3: The increase in reconstruction error (MSSL Error) due
to downsampling and connected aliasing effects across different
Piano-SSM configurations and sampling rates (SR). The Aliased
Eigenvalues column indicates the proportion and absolute number
of eigenvalues violating the Nyquist frequency, leading to aliasing.

and 16 kHz, as well as training at 24 kHz and synthesizing with 16
kHz. Figure 4 presents the MSSL values for the three Piano-SSM
variants (XL, L, and S) on the MAESTRO dataset. The models
were synthesized using the specified sampling rate. For MSSL
evaluation we upsampled and evaluated audios at 44.1kHz to en-
sure a consistent basis for comparison. Additionally, to assess the
impact of resampling, audio downsampled to 16kHz and then up-
sampled back to 44.1kHz was compared to the original 44.1kHz
signal, resulting in an MSSL of 17.54. In comparison, audio re-
sampled from 24kHz back to 44.1kHz yielded an MSSL of 9.6.
To see the loss in performance when switching system dynam-
ics for synthesizing with a lower sampling rate we compare with
the baselines, where training and synthesis sampling rates are the
same. The baselines have always lower MSSL, but the error incor-
porated due to system downsampling is acceptable.

As explained in Section 3.1, we can investigate the learned
state dynamics by analyzing the eigenvalues. Figure 3 shows fre-
quencies f =(β · ftrain) / 2π over exponential decay time con-
stants τ = 1/(αr · ftrain) of all the eigenvalues across the layers
for the there Piano-SSM model configurations trained at ftrain =
44.1kHz. We observe that a decent amount of eigenvalues always

DAFx.6

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

lie within the MIDI frequency range, and the last layer always has
the fastest dynamics with the highest frequency components and
smallest decay rates. Further interpretability remains still a chal-
lenge due to the fact that this only interprets the linear aspects, and
state dynamics do not incorporate input/output behavior. How-
ever, we are still able to investigate the amount of eigenvalues vi-
olating the Nyquist borders, having a strong influence on the dis-
cretization/aliasing effects. After training there are already some
eigenvalues violating the Nyquist border (see Fig.3). In Tab. 3
we compare the increase in MSSL and also show the amount of
eigenvalues violating the related Nyquist border. Results indicate
a strong correlation between the increase in MSSL and the increase
in aliased eigenvalues.

6. EXPERIMENTAL EVALUATIONS ON MAPS

Within this experiment, we consider training the Piano-SSM XL
model solely on isolated notes and chords using the ISOL, RAND,
and UCHO sets for the piano Yamaha Disklavier Mark III of the
MAPS [14] dataset.

The evaluation is done on the MUS set of MAPS, which con-
sists of pieces of piano performances. Training only on isolated
notes and chords makes this an even more challenging task than
the MAESTRO dataset. Table 1 shows the dataset durations in
hours used for training and evaluation for the different datasets.
We train three models for three recording conditions. MAPS close,
MAPS ambient and their combination MAPS Close & Ambient.
MAESTRO consists of complete piano performances and offers a
larger training set compared to the MAPS dataset.

Table 4 shows MSSL scores evaluated for 10s synthesizing
windows for models trained at 24kHz. Despite being trained only
on single isolated notes and chords (ISOL, RAND, and UCHO
sets of MAPS), the model was tested on full piano performances
(MUS set of MAPS). This demonstrates its ability to generalize
beyond the training data. We also show the results of a Piano-
SSM XL model trained on the MAESTRO dataset but evaluated
on the MUS set of MAPS. While the results of training on MAPS
do not match those models trained on the MAESTRO dataset, they
remain remarkable, given the limited training set.

Config. Train. Eval. MSSL ↓

XL Close Close 8.71
XL Ambient Ambient 8.30
XL Close & Ambient Close & Ambient 8.23
XL MAESTRO Close & Ambient 7.95

Table 4: Piano-SSM XL evaluated for MAPS-MUS at 24kHz.
Comparing three models trained on MAPS (Close, Ambient, Am-
bient & Close) with isolated notes and chords. Additionally, a
model trained on MAESTRO. Lower (↓) MSSL indicates better
temporal and spectral alignment with ground truth audio.

7. AUTO-REGRESSIVE REAL TIME SYNTHESIS

A key advantage of SSMs is their ability to efficiently infer in an
auto-regressive mode. For comparison, DDSP-Piano v2 reports a
real-time factor (RTF) of 1.9±0.1 on a 2.6GHz Intel Xeon E5-2623

v4 CPU, evaluated on a Intel Core i7-12700 at ∼4.5GHz DDSP-
Piano v2 achieves a RTF of 1.4±0.1 in multi threading mode and
2.8±0.1 in single core mode. We evaluate the RTF performance of
Piano-SSM on a single core of an Intel Core i7-12700 at ∼4.5GHz,
across multiple sampling rates and model sizes. Both CPUs sup-
port AVX2; they mostly differ in cache size and clock rate. The
RTF is calculated as the ratio of synthesis time to actual audio du-
ration, with RTF < 1.0 indicating real-time processing. All mea-
surements are based on a custom C++17 header-only implementa-
tion optimized for low-latency audio synthesis, internally inferring
one sample at a time. In addition to RTF, we report an average
per-sample inference delay from input to output: 10µs for the XL
model, 5µs for the L model, and 3µs for the S model. The results
are shown in Table 5.

Config. SR
[kHz]

RTF ↓ Workload
[GFLOP/s]

Delay
[µs]

XL 44.1 0.44 23.105 10.1
L 44.1 0.22 11.996 4.9
S 44.1 0.12 6.442 2.6

XL 24.0 0.24 12.574 10.1
L 24.0 0.12 6.529 4.9
S 24.0 0.06 3.506 2.6

XL 16.0 0.16 8.383 10.1
L 16.0 0.08 4.352 4.9
S 16.0 0.04 2.337 2.6

Table 5: Real-time factor (RTF) of different Piano-SSM Con-
figurations at different sampling rates SR, measured on a Intel
Core i7-12700 Processor. Lower (↓) RTF indicate faster inference
time. The Workload required to synthesize one second of raw au-
dio is reported, along with the average per-sample inference Delay
from input to output.

8. CONCLUSION

This work introduces Piano-SSM, a novel neural network archi-
tecture enabling causal real-time piano audio synthesis at different
sampling rates. Our models cover a parameter range of 268.4k–
79.4k. The largest model allows for synthesizing one second of
audio at 44.1kHz in 0.44s with a workload of 23.1GFLOPS/s and
an 10.1µs input/output delay. The fastest model at 16kHz only
needs 0.04s with 2.3GFLOP/s and 2.6µs input/output delay, using
an Intel Core i7-12700 processor at 4.5GHz with single-core infer-
ence. Benchmarks on the Maestro dataset show comparable results
to state-of-the-art DDSP-Piano v1 and DDSP-Piano v2. Evalua-
tions with the MAPS dataset also show that reasonable results can
be achieved with a very limited amount of training data. A key fea-
ture of the proposed SSM based architecture is the ability to train
at high sampling rates while synthesizing at lower rates without a
need for retraining. We utilize the interpretability capabilities of
SSMs to show the correlation between performance loss and alias-
ing effects when synthesizing at lower sampling rates. Future work
will explore how aliasing effects can be more effectively addressed
during training to reduce downsampling errors.

DAFx.7

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

9. ACKNOWLEDGMENTS

This work is supported by the Austrian Federal Ministry for Dig-
ital and Economic Affairs, the National Foundation for Research,
Technology, and Development, the Christian Doppler Research
Association.

10. REFERENCES

[1] Ben Hayes, Jordie Shier, György Fazekas, Andrew McPher-
son, and Charalampos Saitis, “A review of differentiable dig-
ital signal processing for music and speech synthesis,” Fron-
tiers in Signal Processing, vol. 3, pp. 1284100, 2024.

[2] Jesse H. Engel, Lamtharn Hantrakul, Chenjie Gu, and Adam
Roberts, “DDSP: differentiable digital signal processing,” in
8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

[3] Rodrigo Castellon, Chris Donahue, and Percy Liang, “To-
wards realistic midi instrument synthesizers,” in NeurIPS
Workshop on Machine Learning for Creativity and Design,
2020.

[4] Yusong Wu, Ethan Manilow, Yi Deng, Rigel Jacob Swavely,
Kyle Kastner, Tim Cooijmans, Aaron Courville, Anna
Huang, and Jesse Engel, “Midi-ddsp: Hierarchical model-
ing of music for detailed control,” in Proceedings of the
Tenth International Conference on Learning Representations
(ICLR)(Online)(2022 Apr.), 2022.

[5] Erica Cooper, Xin Wang, and Junichi Yamagishi, “Text-to-
Speech Synthesis Techniques for MIDI-to-Audio Synthesis,”
Feb. 2022, arXiv:2104.12292 [cs].

[6] Lenny Renault, Rémi Mignot, and Axel Roebel, “Differ-
entiable piano model for midi-to-audio performance synthe-
sis,” in 25th International Conference on Digital Audio Ef-
fects (DAFx20in22), 2022.

[7] Lenny Renault, Neural audio synthesis of realistic piano per-
formances, Theses, Sorbonne Université, July 2024, Issue:
2024SORUS196.

[8] Albert Gu, Karan Goel, and Christopher Ré, “Efficiently
modeling long sequences with structured state spaces,” in
The International Conference on Learning Representations,
2022.

[9] Albert Gu, Ankit Gupta, Karan Goel, and Christopher Ré,
“On the parameterization and initialization of diagonal state
space models,” in Proceedings of the 36th International
Conference on Neural Information Processing Systems, Red
Hook, NY, USA, 2024, NIPS ’22, Curran Associates Inc.

[10] Ankit Gupta, Albert Gu, and Jonathan Berant, “Diagonal
state spaces are as effective as structured state spaces,” in
Proceedings of the 36th International Conference on Neural
Information Processing Systems, Red Hook, NY, USA, 2024,
NIPS ’22, Curran Associates Inc.

[11] Jimmy T.H. Smith, Andrew Warrington, and Scott Linder-
man, “Simplified state space layers for sequence modeling,”
in The Eleventh International Conference on Learning Rep-
resentations, 2023.

[12] Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré,
“It’s raw! audio generation with state-space models,” in In-
ternational conference on machine learning. PMLR, 2022,
pp. 7616–7633.

[13] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Si-
mon, Cheng-Zhi Anna Huang, Sander Dieleman, Erich
Elsen, Jesse Engel, and Douglas Eck, “Enabling Factorized
Piano Music Modeling and Generation with the MAESTRO
Dataset,” Jan. 2019, arXiv:1810.12247 [cs].

[14] Valentin Emiya, Nancy Bertin, Bertrand David, and Roland
Badeau, “MAPS - A piano database for multipitch estimation
and automatic transcription of music,” Research Report, July
2010.

[15] Shida Wang and Beichen Xue, “State-space models with
layer-wise nonlinearity are universal approximators with ex-
ponential decaying memory,” in Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

[16] Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and
Christopher Re, “How to train your HIPPO: State space mod-
els with generalized orthogonal basis projections,” in Inter-
national Conference on Learning Representations, 2023.

[17] Hao-Wen Dong, Cong Zhou, Taylor Berg-Kirkpatrick, and
Julian McAuley, “Deep Performer: Score-to-Audio Music
Performance Synthesis,” Feb. 2022, arXiv:2202.06034 [cs].

[18] Jonathan Shen, Ruoming Pang, Ron J. Weiss, Mike Schuster,
Navdeep Jaitly, Zongheng Yang, Zhifeng Chen, Yu Zhang,
Yuxuan Wang, R. J. Skerry-Ryan, Rif A. Saurous, Yannis
Agiomyrgiannakis, and Yonghui Wu, “Natural TTS Synthe-
sis by Conditioning WaveNet on Mel Spectrogram Predic-
tions,” Feb. 2018, arXiv:1712.05884 [cs].

[19] Xin Wang, Shinji Takaki, and Junichi Yamagishi, “Neu-
ral source-filter waveform models for statistical parametric
speech synthesis,” Nov. 2019, arXiv:1904.12088 [eess].

[20] Xuan Shi, Erica Cooper, Xin Wang, Junichi Yamagishi, and
Shrikanth Narayanan, “Can Knowledge of End-to-End Text-
to-Speech Models Improve Neural MIDI-to-Audio Synthesis
Systems?,” Mar. 2023, arXiv:2211.13868 [cs].

[21] Naihan Li, Shujie Liu, Yanqing Liu, Sheng Zhao, Ming Liu,
and Ming Zhou, “Neural Speech Synthesis with Transformer
Network,” Jan. 2019, arXiv:1809.08895 [cs].

[22] Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae,
“HiFi-GAN: Generative Adversarial Networks for Effi-
cient and High Fidelity Speech Synthesis,” Oct. 2020,
arXiv:2010.05646 [cs].

[23] Sungho Lee, Hyeong-Seok Choi, and Kyogu Lee,
“Differentiable Artificial Reverberation,” July 2022,
arXiv:2105.13940 [cs].

[24] Matthias Bittner, Daniel Schnöll, Matthias Wess, and Axel
Jantsch, “Efficient and interpretable raw audio classification
with diagonal state space models,” Machine Learning, vol.
114, no. 8, pp. 175, Jun 2025.

[25] C. E. Shannon, “Communication Theory of Secrecy Sys-
tems*,” Bell System Technical Journal, vol. 28, no. 4, pp.
656–715, Oct. 1949.

[26] C. Steinmetz and Joshua D. Reiss, “auraloss: Audio-focused
loss functions in PyTorch,” 2020.

[27] Naoki Katsura, “Cosine Annealing with Warmup
for PyTorch,” https://github.com/katsura-jp/
pytorch-cosine-annealing-with-warmup, Mar.
2025.

DAFx.8

https://github.com/katsura-jp/pytorch-cosine-annealing-with-warmup
https://github.com/katsura-jp/pytorch-cosine-annealing-with-warmup

	1 Introduction
	2 Background and Related Work
	2.1 Deep State Space Models
	2.2 Methods for Piano Synthesis
	2.3 Piano Datasets

	3 Diagonal State Space Models for Raw Piano Audio Synthesis
	3.1 Piano-SSM
	3.2 Audio Loss Functions

	4 Experimental Setup
	5 Experimental Evaluations MAESTRO
	5.1 Baseline Comparison
	5.2 Variable Synthesis Sampling Rates

	6 Experimental Evaluations on MAPS
	7 Auto-regressive Real Time Synthesis
	8 Conclusion
	9 Acknowledgments
	10 References

