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ABSTRACT
This paper presents a novel approach to neural instrument sound
synthesis using a two-stage semi-supervised learning framework
capable of generating pitch-accurate, high-quality music samples
from an expressive timbre latent space. Existing approaches that
achieve sufficient quality for music production often rely on high-
dimensional latent representations that are difficult to navigate and
provide unintuitive user experiences. We address this limitation
through a two-stage training paradigm: first, we train a pitch-
timbre disentangled 2D representation of audio samples using a
Variational Autoencoder; second, we use this representation as
conditioning input for a Transformer-based generative model. The
learned 2D latent space serves as an intuitive interface for navigat-
ing and exploring the sound landscape. We demonstrate that the
proposed method effectively learns a disentangled timbre space,
enabling expressive and controllable audio generation with reliable
pitch conditioning. Experimental results show the model’s abil-
ity to capture subtle variations in timbre while maintaining a high
degree of pitch accuracy. The usability of our method is demon-
strated in an interactive web application, highlighting its potential
as a step towards future music production environments that are
both intuitive and creatively empowering:
https://pgesam.faresschulz.com/.

1. INTRODUCTION

The creation and exploration of musical samples utilizing deep
learning technologies offer transformative possibilities for music
production. Recent advancements in generative audio synthesis
prominently feature techniques such as Generative Adversarial Net-
works (GANs) and Variational Autoencoders (VAEs), which have
shown great promise in generating waveform audio and complex
musical textures [1, 2]. Despite this, these approaches often re-
quire extensive fine-tuning and highly specific audio representa-
tions to achieve optimal results.
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In recent years, models based on language models (LMs), such
as AudioLM [3] and MusicLM [4], have gained attention for their
robust semantic modeling capabilities. However, these models
largely depend on text-based prompts for conditioning, which lim-
its their ability to capture subtle audio nuances. As a result, music
producers often struggle to articulate detailed audio characteristics
using abstract textual descriptions.

To bridge the gap between advanced generative modeling and
intuitive user interaction, our prior work introduced the Genera-
tive Sample Map (GESAM), which uses a two-dimensional latent
space learned through a VAE to condition a Transformer-based
model for drum sound generation [5]. GESAM provided a more
intuitive visual interface compared to textual or categorical de-
scriptors. However, the initial design of GESAM was focused
solely on percussion sounds and did not consider pitch control.
This work extends the GESAM framework by incorporating pitch
conditioning with a pitch-timbre disentangled latent space.

Pitch-controlled neural instrument sound synthesis is moti-
vated by the observation that timbre varies with pitch, making sim-
ple pitch-shifting algorithms inadequate and necessitating more
advanced methods to capture this dynamic behavior. In prior re-
search, such as [6, 7], audio samples are encoded as high-dimen-
sional vectors, e.g., a 512-dimensional representation. While it is
possible to explore the latent space by interpolating between rep-
resentations of different instruments, as demonstrated in [8, 9], the
high-dimensional nature of the representations limits their interac-
tivity in practical applications. In contrast, the proposed GESAM
framework encodes instruments in a two-dimensional (2D) latent
space, offering an interpretable representation for human users and
significantly enhancing model interactivity for broader application
scenarios.

Building on the aforementioned work, this paper introduces
the pitch-conditioned Generative Sample Map (pGESAM), which
employs a semi-supervised learning strategy for pitch-conditioned
neural instrument sound synthesis. Our approach maps instru-
ment sounds to a two-dimensional timbre latent space, where pitch
information is removed through a dedicated neighbor loss along
with pitch and instrument id classifiers. A conditional Transformer
generator then synthesizes high-quality audio based on specified
pitch and timbre parameters. Experiments on the NSynth dataset
demonstrate that pGESAM achieves accurate pitch control while
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enabling intuitive navigation and manipulation of the timbre latent
space for expressive sound synthesis.

The code base of our pGESAM framework is open source and
available as a GitHub repository 1. Our contributions include:

1. Extending the GESAM framework to generate pitch-
conditioned instrument sounds beyond percussive timbres.

2. Introducing a novel two-stage semi-supervised training
scheme for disentangling pitch and timbre within the latent
representation.

3. Demonstrating improvements in pitch accuracy and timbral
expressiveness through comprehensive experimental evalu-
ation.

4. Providing an interactive web application for intuitive explo-
ration and manipulation of the learned latent space, enhanc-
ing practical usability for music creators.

2. RELATED WORK

Recent advances in deep learning have substantially propelled au-
dio synthesis and musical sample generation, with a wide range of
methods explored to enhance the quality, diversity, and controlla-
bility of synthesized audio. This section reviews relevant method-
ologies and positions our contributions within this evolving land-
scape.

Autoregressive models, such as WaveNet [10] and MelNet
[11], have demonstrated impressive capability in generating high-
fidelity audio. However, their computational requirements due to
sequential generation limit practical usability in interactive appli-
cations. Variational Autoencoders (VAEs), on the other hand, pro-
vide efficient latent representations enabling rapid sample genera-
tion and exploration [12, 6, 13]. While VAEs effectively encode
timbral characteristics, controlling discrete musical attributes, par-
ticularly pitch, remains challenging without explicitly designed
disentanglement mechanisms. Generative Adversarial Networks
(GANs), notably introduced in the audio domain by WaveGAN
[14], have advanced conditional audio synthesis, enhancing sam-
ple realism and enabling targeted attribute manipulation. GAN-
Synth [7] exploits adversarial training to improve music sound
synthesis quality. Some subsequent works adopted GANs in var-
ious generative tasks and conditional generation in specific do-
mains [15, 16, 17, 18, 19]. Recent GAN-based approaches [8,
9] specifically address pitch-timbre disentanglement, significantly
improving the editability and controllability of synthesized sounds.
Despite these advances, GAN-based methods often require intri-
cate training regimes and lack intuitive interaction methods for
users unfamiliar with technical controls.

Denoising diffusion probabilistic models have also gained pro-
minence for their robust generation quality and efficiency, gradu-
ally transforming noise signals into structured audio content [20,
21, 22, 23]. Although promising, diffusion models typically do not
inherently support intuitive real-time interaction or direct control
over disentangled musical attributes.

A noteworthy trend in audio generation research emphasizes
intuitive user interaction, achieved by either exploring interpola-
tions within pre-trained latent spaces [6, 7, 24, 8, 9] or integrat-
ing musical domain knowledge directly into generative models
[25, 26, 27, 28, 29, 30]. However, few existing approaches si-
multaneously achieve effective pitch conditioning, intuitive user

1https://github.com/faressc/pgesam

exploration, and precise disentanglement between pitch and tim-
bre. Our work directly addresses these limitations by extending
the Generative Sample Map (GESAM) framework [5, 31] to ex-
plicitly incorporate pitch conditioning and timbre disentanglement
within a unified semi-supervised learning approach. Unlike pre-
vious methods, our approach effectively integrates a Transformer
model with a carefully structured 2D latent representation derived
from a pitch-conditioned VAE. This design enables musicians to
intuitively and precisely control pitch and timbral nuances, signif-
icantly enhancing expressive possibilities in musical sample gen-
eration.

3. APPROACH

We approach timbre and pitch disentanglement for the GESAM
framework [5, 31] by introducing a specialized neighbor loss along
with pitch and instrument id classifiers. Following GESAM, we
employ the EnCodec model [32] to encode audio samples into em-
beddings prior to training and decode them back into waveforms
after generation.

Our framework operates in two main stages. First, a Vari-
ational Autoencoder (VAE) learns a two-dimensional timbre la-
tent space with explicit disentanglement constraints. Second, a
Transformer model generates high-quality audio embeddings con-
ditioned on both the learned timbre representations and pitch infor-
mation. Figure 1 illustrates the complete framework architecture.

3.1. Stage 1: Variational Autoencoder (VAE) Training

The goal of the VAE is to create an interpretable 2D representation
of timbres, which is then used to condition the transformer in stage
2 and serves as a user interface to explore the landscape of differ-
ent timbres. The VAE consists of an encoder with five 1D convolu-
tional layers, each with channel sizes [128, 256, 512, 1024, 2048]
and a stride of 2, followed by five fully connected layers with sizes
[8192, 4096, 2048, 1024, 512]. The output of the last layer is fed
to two different heads, a regression head and a pitch classification
head. The output of the regression head is the mean µ̃ and log-
var log(σ̃2) of the two-dimensional timbre latent space. Both are
used to sample the latent space vector z̃ using the reparametriza-
tion trick. The output of the pitch classification head is a logit
vector ũ, which is used to compute the pitch classification loss.

For instrument classification, the latent mean vector µ̃ is fed
into a classification network consisting of fully connected layers
with sizes [2, 4, 8, 16, 32, 64, 32, 64, 128, 256, 512, 1024, Ninst],
where Ninst is the number of instrument ids. Its output is the
logit vector ṽ. We also use a family classifier to cluster instru-
ments by family. The family classifier’s contribution is weighted
by an exponentially decaying term that provides stronger influ-
ence early in training, gradually diminishing over time. In con-
trast, the instrument classifier’s contribution increases over time
(Equation 1). The family classifier shares the same input as the
instrument classifier and outputs a logit vector, denoted by w̃, with
Nfam classes. The family classifier uses dense layers with sizes
[2, 4, 8, 16, 32, Nfam].

The VAE’s decoder takes as input the concatenation of the pre-
dicted timbre latent vectors z̃ and a one-hot encoded pitch class
vector û. The latter is computed by separating the pitch logit vector
ũ from the gradient and then using an argmax operation to obtain
the one-hot encoded vector û. The decoder network consists of five
fully connected layers with sizes [512, 1024, 2048, 4096, 8192]
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Figure 1: Main training paradigm of our approach.

and five 1D transposed convolutional layers with channel sizes
[2048, 1024, 512, 256, 128] and a stride of 2. The architecture of
the VAE is shown in Figure 1.

To achieve effective disentanglement of pitch and timbre in-
formation while ensuring that the latent space is well-structured
with macro-clusters of instrument families and micro-clusters of
individual instruments, we introduce a seven-component loss func-
tion. This loss function balances the objectives of reconstruction
quality, regularization, and classification. It is defined as follows:

LVAE = βrecLrec + βKLLKL + βregLreg + βneiγ
αneiLnei + βpitchLpitch

+ βinstγ
αinstLinst + βfam (1− γ)αfam Lfam (1)

where Lrec is the reconstruction loss, LKL is the Kullback-Leibler
divergence loss, Lreg is the regularization loss, Lnei is the neighbor
loss, Lpitch is the pitch classification loss, Linst is the instrument
classification loss, and Lfam is the family classification loss. The
scalar hyperparameters βrec, βKL, βreg, βnei, βpitch, βinst, βfam control
the relative importance of each loss component.

To promote stable training and proper convergence, we em-
ploy a curriculum learning strategy where certain loss components
are introduced gradually. The scheduling parameter γ =

iepoch
Nepoch

represents the training progress, where iepoch is the current epoch
and Nepoch is the total number of training epochs. The neigh-
bor loss and instrument classification loss are gradually weighted
up using γαnei and γαinst respectively, while the family classifi-
cation loss is weighted down using (1 − γ)αfam . The exponents
αnei, αinst, αfam control the rate of these scheduling transitions.
This approach ensures that the model first learns coarse-grained
family distinctions before progressively focusing on fine-grained
instrument-level and neighborhood structure. The VAE hyperpa-
rameters are summarized in Table 1. The training is performed
using minibatches of size 256.

The reconstruction loss employs mean squared error (MSE)

Table 1: Hyperparameters for balancing the VAE loss function

Term Lrec LKL Lreg Lnei Lpitch Linst Lfam

β 0.2 0.0039 1.0 0.6 0.07 0.12 2.0
α – – – 0.5 – 0.8 1.5

between the original and reconstructed audio embeddings:

Lrec =
1

N

N−1∑
i=0

(ẽi − ei)
2 (2)

where N is the minibatch size, ẽi is the reconstructed audio em-
bedding, and ei is the original audio embedding for the i-th sam-
ple.

The Kullback-Leibler divergence loss regularizes the latent
space by encouraging distributions to approximate a standard nor-
mal distribution N (0, I):

LKL =
1

2

N−1∑
i=0

(
µ̃2
i + σ̃2

i − log(σ̃2
i )− 1

)
(3)

where µ̃i and σ̃i are the mean and standard deviation of the latent
distribution for the i-th sample, respectively.

The regularization loss constrains all latent vectors to lie
within the unit circle:

Lreg =
1

N

N−1∑
i=0

max(0, ∥µ̃i∥2 − 1) (4)

where ∥µ̃i∥2 denotes the L2 norm of the latent mean vector.
The neighbor loss promotes structured clustering by apply-

ing attractive forces between samples of the same instrument class
and repulsive forces between different classes. Inspired by metric
learning and the repulsion loss in [33], it combines:

Lnei = Lattractive + Lrepulsive (5)
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The attractive component minimizes distances between latent
representations of identical instruments:

Lattractive =

∑N−1
i=0

∑N−1
j=0,j ̸=i Sij · d2ij∑N−1

i=0

∑N−1
j=0,j ̸=i Sij + ϵ

(6)

The repulsive component enforces a margin M between dif-
ferent instrument classes:

Lrepulsive =

∑N−1
i=0

∑N−1
j=0,j ̸=i(1− Sij) ·max(0,M − dij)

2∑N−1
i=0

∑N−1
j=0,j ̸=i(1− Sij) + ϵ

(7)

Here, Sij = 1yi=yj indicates whether samples i and j share the
same instrument class, dij = ∥µ̃i− µ̃j∥2 represents the Euclidean
distance between latent mean vectors, M = 0.25 is the margin
parameter, and ϵ = 10−6 ensures numerical stability. This formu-
lation encourages compact, well-separated instrument clusters in
the latent space.

The final three components are the loss functions for the clas-
sification heads in the architecture. All three employ cross-entropy
loss, calculated as:

Lclass = − 1

N

N−1∑
i=0

Nclass−1∑
j=0

xij log(pij) (8)

where Nclass is the number of classes, xij is the ground truth one-
hot encoded class vector for the i-th sample in the minibatch, and
pij = softmax(x̃ij), with x̃ij representing the logits from the cor-
responding classification head.

For the pitch classifier loss Lpitch, we set xi,j = ui,j (the one-
hot encoded ground truth pitch class) and pi,j = softmax(ũi,j),
where ũi,j denotes the logits from the pitch classification head.
This classifier predicts the pitch class of audio embeddings based
solely on the input embedding e and is independent of the timbre
latent vectors z̃, thereby encouraging disentangled pitch and tim-
bre representations.

The instrument and family classifiers follow analogous for-
mulations, using xi,j = vi,j and xi,j = wi,j (the one-hot en-
coded ground truth instrument and family classes) with corre-
sponding softmax probabilities pi,j = softmax(ṽi,j) and pi,j =
softmax(w̃i,j), respectively. The instrument classifier ensures
that latent vectors from identical instrument ids are clustered by
pitch, while the family classifier promotes clustering of instru-
ments within the same family.

3.2. Stage 2: Pitch/Timbre-Conditioned Transformer

The second stage employs a Transformer model that generates
high-quality audio embeddings from the VAE’s learned timbre la-
tent space and pitch conditioning. The Transformer follows an
encoder-decoder architecture where the encoder processes latent
representations through multi-head self-attention and feed-forward
networks, conditioning the decoder via cross-attention. The de-
coder employs masked self-attention, cross-attention to encoder
outputs, feed-forward processing, and a final linear projection to
produce audio embeddings.

The encoder receives samples from the predicted timbre latent
distributions z̃ = µ̃+ σ̃ · ϵ · β from the VAE, where ϵ ∼ N (0, 1)
and β = 0.01 controls sampling stochasticity. The timbre latent

vector z̃ is linearly projected to match the transformer’s dimen-
sionality, while the pitch ground truth u is embedded to the model
dimension. These projected representations are positionally en-
coded, concatenated, and processed by the encoder, whose output
provides keys and values for the decoder’s cross-attention mecha-
nism.

The decoder receives a sequence of masked audio embeddings
prefixed with a <BOS> token (initialized as a zero vector). The
masking enforces autoregressive behavior by preventing attention
to future time steps. These masked embeddings are linearly pro-
jected to the model dimension and combined with positional em-
beddings to encode sequence order. The decoder processes this
input through masked self-attention layers and cross-attention to
encoder outputs, followed by feed-forward networks and a linear
projection that restores the original audio embedding dimension-
ality. The model trains autoregressively to predict the next audio
embedding given previous embeddings and encoder context, using
MSE loss between predicted and ground truth audio embeddings.

During generation, users can select a point in the learned 2D
latent space along with a pitch class, and the model generates audio
embeddings iteratively token by token starting from the <BOS>
token. The hyperparameters for both encoder and decoder are de-
tailed in Table 2.

Table 2: Hyperparameters for the Transformer model

Parameter Value
Model dimension 512

Number of layers encoder 8
Number of layers decoder 12
Number of attention heads 8
Feed-forward dimension 8192

4. EVALUATION

In this section, we present an evaluation of our proposed pitch-
conditioned neural instrument sound synthesis method. Using the
NSynth dataset [6], we evaluate the performance of our approach
along several critical dimensions: reconstruction quality, pitch ac-
curacy, and timbre expressiveness. In the evaluation, we compare
our transformer model to the VAE decoder as a baseline. In ad-
dition, we perform an ablation study to analyze how the proposed
loss function components contribute to the successful design of a
latent space that exhibits both perceptual coherence and musical
interpretability, enabling intuitive manipulation of timbral charac-
teristics while maintaining pitch accuracy and ensuring seamless
interpolation between different instrument voices for expressive
performance applications.

4.1. Dataset

For our experiments, we use the NSynth dataset 2, which contains
a large collection of musical instrument sounds. The dataset con-
tains a variety of instruments from 11 different families, each with
multiple samples at different pitches and velocities. For our ex-
periments, we limit the dataset to a subset of pitches ranging from
MIDI note number 48 to 72, which corresponds to the range C2 to
C4, and we use the samples with a velocity of 100 only.

2https://magenta.tensorflow.org/datasets/nsynth
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The dataset is divided into training, validation, and test sets,
with 94.52% of the samples used for training, 4.14% for validation,
and 1.34% for testing. For each dataset, we limited the number of
instrument ids per instrument family to 10, resulting in a maximum
of 110 instrument ids. The instrument ids in the datasets do not
overlap. All samples are mono audio files with a sample rate of
16kHz and a duration of 4 seconds.

The audio samples are upsampled and then encoded using
the EnCodec 24kHz model from MetaAI 3, which compresses the
audio samples into a lower-dimensional representation. The En-
Codec model is trained on a large dataset of audio samples and
is capable of producing high-quality audio embeddings. In our
case, the compression ratio of the EnCodec model is 2.5:1 be-
cause we skip the vector quantization step, which means that the
audio embeddings are 2.5 times smaller than the original audio
samples. The audio embeddings are then used as input to the VAE
and Transformer models.

4.2. Reconstruction Quality

To evaluate the audio quality of the proposed model, we process
audio samples from the dataset to compute embeddings, which
are then re-synthesized using both the VAE model and the VAE-
conditioned Transformer model. As a comparison metric, we use
the Mean Squared Error (MSE) between these generated audio em-
beddings and the corresponding ground truth embeddings. This
evaluation is performed on both the training and test sets of the
NSynth dataset (cf. Table 3). To ensure consistency, both the VAE
and Transformer models are evaluated on the same set of instru-
ments.

Table 3: Mean Absolute Error (MAE) of reconstruction

Dataset VAE Transformer
Train 1.14e-3 4.90e-5
Test 1.02e-3 1.49e-3

The Transformer model achieves higher accuracy on the train-
ing set, but exhibits signs of overfitting, as indicated by the higher
test loss compared to the VAE. When comparing generated em-
beddings, it becomes evident that the VAE struggles to reconstruct
fine-grained structures: the generated embeddings tend to appear
rather flat compared to the ground truth (cf. Figure 2). Listening
to the generated audio samples further highlights the importance
of these fine structural details for perceived sound quality.

4.3. Pitch Accuracy

Generating accurate pitch is essential for neural instrument sound
synthesis models. To assess the pitch accuracy of the proposed
model, we follow a similar approach as in the previous subsec-
tion by reconstructing audio embeddings using both the VAE and
Transformer models. The reconstructed audio embeddings are
then fed into the VAE encoder, where the trained pitch classifier
evaluates the pitch accuracy of the generated samples. We use 0/1
accuracy to compare the generated pitches with the ground truth
pitch annotated in the dataset for both the training and test sets (cf.
Table 4).

To ensure the pitch classifier’s validity, we first computed
the pitch accuracy using the original audio embeddings from the

3https://huggingface.co/facebook/encodec_24khz

Table 4: Pitch classification 0/1 accuracy

Dataset GT VAE Transformer
Train 1.00 0.112 1.00
Test 0.755 6.91e-2 0.996

dataset, which yielded a very high accuracy, which confirms the
reliability of the pitch classifier in the evaluation. From the ex-
periment results, we observe that the Transformer model is able
to generate pitch-accurate samples with perfect accuracy on the
training set and over 99% accuracy on the test set. In contrast,
the VAE generates only about 11% of the samples with the correct
pitch. This lower accuracy may result from the VAE’s inability to
capture fine-grained details, which might be crucial for encoding
pitch information effectively in the embedding.

4.4. Pitch-Timbre Disentanglement

To evaluate the disentanglement of pitch and timbre information
in the learned latent space of the VAE, we have first conducted
a qualitative analysis of the latent space. We visualize the la-
tent space by plotting the predicted timbre latent mean vectors µ̃
in a two-dimensional scatter plot, where each point represents a
sample in the latent space. The resulting plot is shown in Fig-
ure 3. We can observe very tight clusters of latent mean vectors
that are evenly distributed within the unit circle. These clusters
represent different instrument ids (encoded in a color transition),
with each cluster containing samples of the same instrument at
different pitches, demonstrating successful pitch-timbre disentan-
glement. In the figure, the clusters are extremely tight - indicating
a strong pitch-timbre disentanglement - which makes them appear
as single points rather than distinct scatter symbols.

In a second quantitative evaluation step for the disentangle-
ment of pitch and timbre information, we examine the variance of
the latent mean vectors by instrument id Vinst. Since our dataset
contains only one velocity level, different samples with the same
instrument id represent a different pitch. Assuming that the pitch
and timbre information are disentangled and the latent space repre-
sents only the timbre information, the variance of the latent mean
vectors for samples with the same instrument id should be small.
We compute the variance of the latent mean vectors component-
wise for each instrument id, and then average them over all instru-
ment ids:

Vinst =
1

Ninst

Ninst−1∑
i=0

1

Ni

Ni−1∑
j=0

(µ̃ij − ¯̃µi)
2 (9)

Here, Ninst is the number of instrument ids, Ni is the number of
samples for the i-th instrument id, µ̃ij is the latent mean vector for
the j-th sample of the i-th instrument id, and ¯̃µi is the mean of the
latent mean vectors for the i-th instrument id.

For reference, we compare Vinst to the variance of the predicted
latent mean vectors of samples within the same pitch class Vpitch.
For ideal user control, the latent mean vectors for each pitch class,
representing projections of the different instrument ids, should
form a uniform distribution on a unit circle. It is calculated as
follows:

Vpitch =
1

Npitch

Npitch−1∑
i=0

1

Ni

Ni−1∑
j=0

(µ̃ij − ¯̃µi)
2 (10)
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(a) Original Embedding (b) VAE Generated (c) Transformer Generated

Figure 2: Visualization of the latent space with different model configurations.

Figure 3: Visualization of the latent space of the proposed VAE
model. The plot shows the predicted timbre latent mean vectors µ̃
for all samples in the training set. Each point represents a sample.
Instruments of the same family share a base color; the offsets in
the color spectrum indicate different instrument ids.

where Npitch is the number of pitch classes, Ni is the sample count
for pitch class i, µ̃ij is the latent mean vector for sample j of pitch
class i, and ¯̃µi is the mean latent mean vector for pitch class i.

We compute the variance for both training and test datasets
are shown in Table 5. The Vinst values are six orders of magnitude
smaller than Vpitch in the training dataset, demonstrating effective
disentanglement between pitch and timbre information. For the
test dataset, while Vinst remains smaller than Vpitch, the difference
is less pronounced, indicating that the model generalizes reason-
ably to unseen data while maintaining separation between pitch
and timbre characteristics.

The Vpitch values range between 0 and 0.25 for both datasets,
aligning with theoretical expectations: while the Kullback-Leibler
divergence loss encourages latent mean vectors toward the origin,
the regularization and repulsion losses promote uniform distribu-
tion of latent vectors within the unit circle, approaching a variance
of 0.25 per component.

4.5. Ablation Study

In this section, we conduct an ablation study to analyze the impact
of the proposed loss function components and the family classifier
on the formation of the latent space and the disentanglement of
pitch and timbre information. We conducted four different exper-
iments to evaluate the effectiveness of the Kullback-Leibler (KL)

Table 5: Variance analysis of latent mean vectors by instrument
and pitch for the training and test datasets of the proposed VAE
model.

Dataset [Vinst, x, Vinst, y] [Vpitch, x, Vpitch, y]
Train [1.13e-7, 1.00e-7] [0.179, 0.179]
Test [2.40e-2, 2.83e-2] [0.136, 0.123]

loss, regularization loss, neighbor loss, and the family classifier.
Each experiment involves training a VAE with one of these com-
ponents removed, allowing us to assess the contributions of each
component to the overall performance of the model. Figure 4
shows the latent space representation of the trained VAEs. In Ta-
ble 6, we summarize the results of a variance analysis, similar to
Section 4.4 for each configuration on the training dataset.

Table 6: Variance analysis for each configuration of the ablation
study. The variance of the latent mean vectors is shown by instru-
ment and pitch for the training dataset only.

Model [Vinst, x, Vinst, y] [Vpitch, x, Vpitch, y]
Baseline [1.13e-7, 1.00e-7] [0.179, 0.179]

No KL loss [2.06e-5, 8.25e-7] [0.229, 0.286]
No reg. loss [1.93e-5, 1.49e-4] [0.189, 0.125]
No nei. loss [1.22e-4, 9.07e-5] [2.34e-3, 2.05e-3]

No family classifier [1.58e-7, 1.76e-7] [0.191, 0.173]

The latent space without KL loss (Figure 4a) exhibits more
uniformly distributed instrument clusters around the unit circle,
as expected since removing KL regularization eliminates the con-
straint that pulls latent mean vectors toward the origin. This distri-
butional change yields higher Vpitch values compared to the base-
line but creates a wider range of relative distances between differ-
ent instruments, potentially disrupting the semantic organization
of the latent space. The increased Vinst values further indicate that
pitch-timbre disentanglement degrades without KL regularization.
Listening tests confirm these quantitative findings, revealing that
samples generated from interpolated points between training data
sound less smooth and coherent, demonstrating that KL regular-
ization is essential for maintaining both perceptual continuity and
meaningful structural organization in the latent representation.

Without the regularization loss (Figure 4b), the latent space is
no longer constrained to the unit circle, resulting in an asymmet-
ric distribution that preferentially spreads along the x-axis. This
asymmetry is quantified in the variance analysis, where Vpitch, x =
0.189 significantly exceeds Vpitch, y = 0.125. While the KL loss
prevents completely unbounded growth of the latent representa-
tions, the absence of explicit spatial constraints undermines the
effectiveness of the neighbor loss, which relies on the limit of the
unit circle for meaningful geometric relationships between nearby
points in the latent space.
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(a) No KL loss (b) No regularization loss (c) No neighbor loss (d) No family classifier

Figure 4: Visualization of the latent space with different model configurations. Each subfigure shows the latent space of a VAE trained
without one of the proposed components. Each point represents a sample. Instruments of the same family share a base color; the offsets in
the color spectrum indicate different instrument ids.

The latent space without the neighbor loss (Figure 4c) shows
less uniform spacing between instrument clusters. Due to the KL
loss, the latent vectors exhibit a dense population around the ori-
gin. While the center becomes densely populated, the other re-
gions of the unit circle remain empty, reducing the effectiveness of
latent space exploration. In the variance analysis, we observe that
the Vpitch values are significantly lower than those of the baseline
model, indicating that the neighbor loss is crucial for encouraging
even distribution of instrument timbres across the unit circle.

Finally, we evaluated the latent space representation without
the family classifier. Figure 4d reveals the absence of macro-
clusters of instrument families, with instruments belonging to
the same families now scattered throughout the space rather than
grouped together. Interestingly, without the family classifier, the
Vinst values exceed those of the baseline model, indicating de-
graded pitch-timbre disentanglement and suggesting that the fam-
ily classification task aids in learning semantically meaningful rep-
resentations.

These ablation experiments collectively demonstrate that each
component of our proposed loss function, along with the family
classifier, plays a crucial role in forming a well-structured and dis-
entangled latent space that enables intuitive instrument timbre nav-
igation and effective pitch-conditioned synthesis.

5. INTERACTIVITY

To demonstrate our results, we developed an interactive web demo.
Through the demo interface, users can select a point in the 2D
latent space to choose a timbre. To select a pitch for generation,
users have two options: they can use a slider to select the desired
note or use their computer keyboard, which is mapped to a MIDI
piano starting with note C3 on the a key. The q key allows users
to toggle between two octaves. The interactive demo is available
at our website: https://pgesam.faresschulz.com/.

6. CONCLUSION

This paper introduced a pitch-conditioned Generative Sample
Map (pGESAM), an interactive framework to synthesize pitch-
controlled instrument sounds from an expressive 2D timbre latent
space. Our proposed semi-supervised learning strategy effectively
disentangles pitch and timbre information, offering users intuitive
and creative timbre exploration while preserving the pitch accu-
racy of the synthesized sounds. We validated our model using the
NSynth dataset, demonstrating superior performance in terms of
reconstruction quality, pitch accuracy, and timbral expressiveness
compared to the baseline method. Through an extended ablation
study, we confirmed that the components of our proposed learning
objectives, including KL loss, regularization loss, neighbor loss,
and family classifier, are crucial for achieving an expressive and
interpretable latent space with intuitive interactivity.

To further demonstrate practical usability, we provided an
interactive web application, allowing musicians and creators to
effortlessly explore and manipulate generated instrument sounds
within the intuitive latent space. Future work includes extending
the method to more diverse datasets, incorporating additional con-
trollable musical attributes, and realizing variable lengths of syn-
thesized sounds, which will pave the way for further bridging the
gap between advanced audio generation models and practical user
applications.
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