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ABSTRACT

In this paper, we propose the use of real-valued Linear Recurrent
Units (LRUs) for black-box modeling of audio circuits. A net-
work architecture composed of real LRU blocks interleaved with
nonlinear processing stages is proposed. Two case studies are
presented, a second-order diode clipper and an overdrive distor-
tion pedal. Furthermore, we show how to integrate the antideriva-
tive antialiaisng technique into the proposed method, effectively
lowering oversampling requirements. Our experiments show that
the proposed method generates models that accurately capture the
nonlinear dynamics of the examined devices and are highly effi-
cient, which makes them suitable for real-time operation inside
Digital Audio Workstations.

1. INTRODUCTION

Data-driven virtual analog (VA) modeling of audio circuits, com-
monly known as “black-box” modeling, is an established research
area in musical signal processing. In this approach, the inter-
nal mechanisms of the device under study remain unknown; in-
stead, the method focuses on fitting parameters within a predefined
structure to replicate measured input–output relationships. In con-
trast, “white-box” modeling focuses on analyzing circuit schemat-
ics to derive the underlying system equations, which are then dis-
cretized. Although effective, white-box modeling is typically la-
borious, which has motivated substantial research into automated
modeling frameworks that streamline this process [1–3]. In sce-
narios where schematics are unavailable, black-box techniques re-
main the only viable option.

With the advent of machine learning (ML), recent research
in black-box modeling has increasingly leveraged different neural
network (NN) architectures. In [4], for example, a Convolutional
Neural Network (CNN) based on WaveNet was used to emulate
a tube amplifier. Meanwhile, a substantial body of research has
focused on Recurrent Neural Networks (RNNs) for circuit model-
ing. Because RNNs are designed to handle sequential data with in-
herent memory and nonlinear relationships, they are a compelling
choice for VA. In [5] two well-known RNN architectures–the Long
Short-Term Memory (LSTM) and the Gated Recurrent Unit (GRU)–
are compared for modeling a guitar distortion circuit and a tube
amplifier, demonstrating performance comparable to earlier CNN-
based approaches at lower computational costs during inference.

Copyright: © 2025 Fabián Esqueda et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

Despite these advantages, RNNs present significant training
challenges, primarily due to vanishing and exploding gradient prob-
lems [6]. Furthermore, their recursive nature precludes paralleliza-
tion across the time dimension, hindering the use of arbitrary se-
quence lengths during training. These constraints have motivated
research into alternative ML architectures, notably Transformers
with their attention mechanisms [7] and state-space models (SSMs)
[8], which offer improved parallel processing capabilities while
maintaining temporal coherence.

SSMs originate from control theory, where they are used to
describe dynamical systems through ODEs that govern the evolu-
tion of a set of hidden states over time. It is important to point out
that, while state-space formulations can accommodate nonlinear
dynamics, this work (like most ML literature on SSMs) focuses
only on linear SSMs. This represents a key difference with tra-
ditional RNNs, which are inherently nonlinear. Defining SSMs
as purely linear processing blocks enables parallelization across
time and prevents vanishing or exploding gradients. In previous
research, [9] proposed an approach in which the trajectories of the
system states are learned through a residual network trained on
actual state data, which in the case of audio circuits corresponds
mainly to the voltages across memory-storing elements such as in-
ductors and capacitors. While highly effective, this approach is
also relatively laborious, as it requires direct access to the internal
states of the device.

In [10], Orvieto et al. introduced a structure called the Linear
Recurrent Unit (LRU), a SSM specifically designed for tasks with
long memory dependencies. The LRU achieves its performance
through several key characteristics, including a diagonal structure
that enables efficient training on arbitrary sequence lengths and an
exponential parameterization that ensures model stability. Since
LRUs are linear time-invariant (LTI) units, the authors propose in-
terleaving them with standard ML nonlinear blocks–such as Multi-
Layer Perceptrons (MLPs) or Gated Linear Units (GLUs)–to cap-
ture any nonlinear relationships in the data. Although this decou-
pling of linear and nonlinear components precludes Turing com-
pleteness, Orvieto et al. demonstrate that stacking multiple LRUs
with nonlinear elements provides a high level of expressivity per-
fectly capable of emulating any nonlinear dynamics seen in the
data, provided the network has the right size [10].

In this work, we propose an application of LRUs for black-
box modeling of analog audio distortion circuits. We investigate
the adaptation of Orvieto et al.’s original complex-valued formu-
lation to a purely real-valued one, while examining how network
hyperparameters–including state size, hidden layer size, and net-
work depth–influence modeling accuracy. As case studies, we
model two guitar pedals: a distortion and an overdrive circuit.
Lastly, we show how to integrate antialiasing during inference.
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The use of LRUs for VA modeling was first proposed in [11],
where the authors conducted a comprehensive comparative analy-
sis of five distinct ML architectures across multiple audio effects.
This work demonstrated the suitability of LRUs for VA tasks, as
they outperformed RNNs and other SSM architectures for some
of the effects evaluated. A fundamental distinction between this
prior research and our work lies in the implementation of the LRU
blocks and in the overall NN architecture. In [11], the LRUs are
implemented across the so-called “feature“ dimension as opposed
to the temporal one. To do so, the authors defined a fixed window
size of 64 input samples which are then compressed into the hidden
size before being processed by the LRU matrices. This approach
introduces a 64-sample processing latency, as the network gener-
ates a single output sample for every 64-sample window. In con-
trast, our approach applies LRUs directly along the time dimen-
sion, avoiding latency, supporting parallelization during training,
and enabling antialiasing through a time-domain method. We also
experiment with deeper structures than those discussed in [11],
highlighting the significance of this implementation aspect.

This paper is organized as follows. Section 2 presents the the-
oretical background on SSMs and LRUs. Section 3 introduces our
network architecture, and Section 4 explains the integration of an-
tialiasing into our method. Section 5 outlines our experimental
methodology, while Section 6 details our results, including real-
time network run times. Finally, Section 7 offers concluding re-
marks and directions for future research.

2. BACKGROUND

The state-space formulation is a mathematical representation used
to describe the behavior of a system through a set of states that
evolve over time in response to a driving input and to the system’s
internal dynamics [12]. In the continuous-time domain, a system
can be written in state-space form as:

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(1)

where u, y and x are vectors representing the inputs, outputs and
states of the system, respectively, and t is time. A, B, C and D
are matrices that describe the behavior of the system. Matrix A, in
particular, determines its stability, as it describes the evolution of
the states over time.

In the discrete domain, assuming a constant time step (i.e. con-
stant sampling rate), system (1) is written as:

xn+1 = Ãxn + B̃un (2)

yn = C̃xn + D̃un (3)

where n is the discrete-time sample index (xn ≡ x[n]), and ma-
trices Ã–D̃ are discretized forms of A–D. The relationship be-
tween A–D and Ã–D̃ will depend on the discretization scheme
used [10]. For sequence modeling tasks, matrices Ã–D̃ can be
seen as the parameters to be learned via gradient descent.

As shown by (2), state-space systems are recursive. The cur-
rent state vector is needed to compute the next one and so on.
RNNs operate in the same recursive manner, with the exception
that the relationship between successive states is nonlinear. This
recursion forces sequential processing during training, leading to
longer training times compared to architectures such as CNN that
can be parallelized across time.

To understand how linear SSMs tackle this computational con-
straint, we observe what happens when we evaluate the first three
steps of the general discrete state-space model. Assuming x0 = 0

and rewriting Ã–D̃ as A–D for simplicity, we get:

x1 = Bu0 x2 = Ax1 +Bu1 x3 = Ax2 +Bu2

y0 = Du0, y1 = Cx1 +Du1, y2 = Cx2 +Du2.

Focusing only on the state evaluation, we can further ’unroll’ the
recursion to derive an expression for xn in terms of u exclusively:

x1 = Bu0

x2 = ABu0 +Bu1

x3 = A2Bu0 +ABu1 +Bu2
...

xn = An−1Bu0 +An−2Bu1 + . . .+Bun−1 (4)

At this point a pattern emerges and we conclude that

xn =

n−1∑
k=0

AkBun−k. (5)

Therefore, by unrolling the recursion the evaluation of the state
vector x can be reformulated as a feedforward operation. This en-
ables us to parallelize the evaluation of the state vector across the
time dimension using techniques such as the parallel scan algo-
rithm [13, 14]. Furthermore, by examining (5), we observe that
computing x requires evaluating powers of the A matrix. This in-
troduces a new computational bottleneck, as the complexity will
once again scale exponentially with sequence length. To address
this challenge, Gu et al. proposed constraining A to be diago-
nal [8], effectively replacing the expensive process of computing
repeated matrix powers with the more efficient operation of com-
puting powers of individual diagonal elements.

It is essential to point out that the form (5) is used exclusively
during training. For inference, we revert back to the original recur-
sive form (2), which is capable of processing data one sample at a
time and is suitable for latency-free real-time implementations.

One final general observation regarding deep learning archi-
tectures that incorporate SSMs is their connection with Koopman-
based models. In Koopman theory, nonlinear dynamical systems
are transformed into infinite-dimensional linear systems in the space
of observables [15]. This perspective allows nonlinear systems
to be analyzed using linear operator theory. As will be exempli-
fied later, the learned state dimensionality of SSM-based neural
networks is typically higher than that of the underlying systems.
From a theoretical perspective, this can be interpreted as an at-
tempt to learn a finite-dimensional approximation of the Koopman
operator. This is discussed, for instance, in Appendix E of [10].
A comparison between SSMs and Koopman-based models in the
context distributed acoustic systems can be found in [16].

2.1. Linear Recurrent Units

Building on the work presented in [8], Orvieto et al. introduced
in [10] the LRU, a diagonal SSM that can be written directly in
discrete time as:

xn+1 = Λxn +Bun (6)
yn = Cxn +Dun (7)
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where Λ = diag(λ1, λ2, ..., λN ) ∈ CN×N , B ∈ CN×H , C ∈
CH×N and D ∈ RH×H . Parameters N and H denote the size
of the state vector x, and the input/output vectors u and y, re-
spectively. As explained by the authors, the use of complex num-
bers emerges based on the fact that an arbitrary dense matrix A ∈
RN×N with linearly independent eigenvectors can be diagonal-
ized into a diagonal complex matrix. Defining the state matrix to
be complex diagonal means each element will represent a system
pole and system stability can therefore be guaranteed by ensur-
ing these remain inside the unit circle during both inference and
training. Additionally, it allows the network to learn oscillatory
behavior.

In addition to the discussed discrete-domain definition, LRUs
have two main features. The first is an exponential parameteriza-
tion where each element in the state matrix is defined as λj :=

exp(− exp(ν log
j ) + iθj), where ν log is the vector of parameters

to be optimized and is initialized as ν log
j := log(νj) for νj ∈

[0, 1]. Parameter θ determines the angle of the complex number
and is initialized between [0, 2π]. The purpose of this exponential
parametrization is twofold, to help ensure the stability of the sys-
tem and to add more resolution to the area near the unit circle [10].

A second important feature of LRUs is the use of a normaliza-
tion strategy, which modifies the state update as

xn+1 = Λxn + exp(γ log)⊙Bun, (8)

where γ log ∈ RN is a trainable parameter vector initialized via
the state matrix γ log

j := log(
√

1− |λj |2). For a more detailed
description of the features LRUs the reader is referred to [10].

2.2. Proposed Modifications

In this work, we propose the use of LRUs as part of a larger NN
architecture designed to model distortion circuits. Our approach
adheres, for the most part, to the framework established by Orvieto
et al., with one significant modification regarding the LRU defini-
tion. In [10], the authors emphasize the importance of initializing
the entries of Λ to lie close to the unit circle and in the vicinity
of the real axis (i.e. highly resonant and low frequency modes).
During our initial experiments we were able to confirm this, and
in fact observed that the best results were obtained when θ was
initialized to be very close to zero. This empirical finding, to-
gether with recent research on diagonal SSMs that explores the use
of purely real-valued matrices [17]–albeit in different applications
and architectures–motivated us to constrain Λ to be purely real.
Although this design decision precludes the network from learning
oscillatory behavior, such as that of self-oscillating synthesizer fil-
ters, it proved to be suitable for the systems examined in this study.
Moreover, it has the added advantage of significantly reducing the
complexity of the implementation across different platforms, as
some systems might not provide native support for complex num-
bers. From a system dynamics point of view this design choice
means the modes in our system are characterized exclusively by
exponentially decaying dynamics.

Following this modification, our LRU block is still defined by
the equations (7) and (8), but with matrices Λ ∈ RN , B ∈ RN×H ,
C ∈ RH×N and D ∈ RH . Since we continue to use the two LRU
properties described in the previous section, namely the exponen-
tial parameterization and the normalization strategy, as well as sev-
eral of the implementation details originally presented by Orvieto
et al. (see Sec. 3 and Sec. 5), we simply refer to this model as a
Real Linear Recurrent Unit.

3. NETWORK ARCHITECTURE

Figure 1 shows a block diagram representation of the proposed
architecture as used during training. This design interleaves the
LTI real LRU stages with nonlinear processing elements to cap-
ture the nonlinear relationships present in the data, as is standard
in SSM-based ML architectures. For example, prior works such
as [8] and [10] combine diagonal SSMs with MLPs and GLUs.
For each nonlinear stage we chose a streamlined approach consist-
ing of a nonlinear activation function followed by a single fully
connected (FC) layer. This design is similar to the one in [11],
but in reverse order. We chose this reversal–and also omitted an
additional FC layer before the activation function–because either
option would have resulted in two consecutive linear operations.
Since the input to the nonlinear block is computed by a linear op-
eration, a pre-activation FC layer can be seen as redundant, with
its weights effectively absorbable into those of the LRU.

The proposed network expects an input tensor with dimen-
sions (B,L, 1) where B is batch size and L is sequence length.
The last dimension is kept at 1 for monophonic audio input. The
first component of the network (highlighted in red) is an FC layer
that projects the input tensor to the internal hidden dimension H .
Biases are disabled for this layer. The next stage is the real LRU
block, which maps the input tensor to the state size N and maps it
back to H via matrices C and D following the state update. The
output of the LRU block is then passed through a series of non-
linear saturating activations applied element-wise, followed by an
additional FC layer. Section 4 discusses the choice of activation
function. For simplicity, the width of this nonlinear stage is also
defined as H . Lastly, the output of the nonlinear stage is mixed
with the input to the real LRU block via a skip connection. This
combined pair–comprised of the real LRU and the nonlinear stage
with skip connection–is repeated D times, determining the depth
of the network. Finally, the output of the Dth block is mapped
back to the original input dimension through an FC layer (also
highlighted in red) with biases disabled.

An interesting observation that can be made about the pro-
posed structure is that it is reminiscent of block-oriented structures
such as Wiener-Hammerstein and related models, which have in
the past been used for black-box VA modeling tasks [18]. Indeed,
one can view this proposed structure as a multi-dimensional, deep,
and highly optimized Wiener–Hammerstein style model. How-
ever, a thorough examination of the equivalences between SSMs
and block-oriented structures lies outside the scope of this study.

4. ANTIALIASING

As previously mentioned, one key advantage of decoupling the
linear and nonlinear components inside the NN is that we can em-
ploy established antialiasing techniques, such as antiderivative an-
tialiasing (ADAA), with relative ease. First introduced by Parker et
al. [19], ADAA is a technique to mitigate aliasing in memoryless
nonlinearities of the form yn = f(xn), where f(·) is a nonlinear
mapping. In its first-order form, ADAA is defined as

yn =
F (xn)− F (xn−1)

xn − xn−1
, (9)

where F (·) is the first antiderivative of f(·). When implemented
in a finite-precision context, (9) becomes ill-conditioned if xn ≈
xn−1. To avoid this, we can replace (9) with the averaged evalua-
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Figure 1: Block diagram representation of the proposed network architecture. As an example, we use a network with state size N = 8 and
hidden size H = 4. The abbreviation “F. C.” denotes fully connected, or dense, layers

tion yn = f((xn + xn−1)/2) whenever ϵ > |xn − xn−1|, where
ϵ is a predetermined threshold.

Now, our proposed architecture features a nonlinear process-
ing stage after each real LRU block (see Fig. 1). Each of these
stages consists of an element-wise activation function followed by
an FC layer. Since the processing blocks in the proposed struc-
ture are memoryless, they lend themselves naturally to ADAA. A
typical choice for the activation function in VA modeling tasks
is the hyperbolic function tanh(·). Substituting these nonlinear
activations with antialiased forms is in fact somewhat of a trivial
process; however, a key limitation arises due to the black-box and
multi-dimensional nature of neural networks, again relating to ill-
conditioning.

In standard ADAA, parameter ϵ is set according to the ex-
pected input signal range, which is typically known. In a ML
context, however, the distribution of signals at various points in
the network–both during training and inference–is generally not
known, making it difficult to select a suitable value for ϵ. This
challenge is compounded by the fact that the total number of non-
linearities, given by H×D, can be large, and there is no guar-
antee that thresholds can be shared across different parts of the
network. Although normalization strategies may partially allevi-
ate this problem, they can also influence the outcome of training,
making them an unsuitable solution as we would like to decouple
this behavior. During our experiments, we were unable to find suit-
able ill-conditioning thresholds that ensured the correct operation
of the network for arbitrary input.

Figure 2: Comparison between the classic tanh(x) activation func-
tion and its algebraic approximation.

Rather than devising a procedure to find optimal ill-conditioning
thresholds, we pursue an alternative that eliminates the need for
them altogether. We replace the standard tanh(·) activation with
the saturating function

f(x) = sin(arctan(x)), (10)

which can be written algebraically as

f(x) =
x√

1 + x2
. (11)

Figure 2 shows the input–output relation of this function plotted
against tanh(·). Although not a perfect one-to-one match, we can
observe that both functions exhibit the same general saturating be-
havior and converge to ±1 at the respective ends of their input
range.

Equation (11) is exhibits a desirable property when used in
conjunction with ADAA. Its antiderivative appears in closed form
as

F (x) =
√

1 + x2. (12)

Substituting (12) into (9) yields the antialiased form

yn =

√
1 + x2

n −
√

1 + x2
n−1

xn − xn−1
, (13)

which can be simplified via rationalization, giving us:

yn =
xn + xn−1√

1 + x2
n +

√
1 + x2

n−1

. (14)

Notably, the denominator here will always be ≥ 1, ensuring that
this form does not suffer from ill-conditioning1. This means we
can safely replace every nonlinear activation in our network (as-
suming (11) was used during training) with this antialiased form
without concern for undefined behavior.

Lastly, we note that the first-order ADAA introduces a delay
of half a sample, which must be compensated for in the skip path
via a two-point average operator, yn = (xn + xn−1)/2.

1To the best of our knowledge, Julian Parker was the first to identify this
property [20] following the publication of [19]. It was later discovered in-
dependently by Martin Vicanek and documented in a recent self-published
note [21].
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5. EXPERIMENTAL SETUP

This section details the experiments performed, including a de-
scription of the examined devices, measurement signal and record-
ing setup, as well as training process.

5.1. Modeled Devices

The proposed approach was tested using two guitar distortion cir-
cuits as case studies. The first circuit is a variant of the well-
known second-order diode clipper, which has been the subject of
numerous VA papers (see, e.g., [9] and [22]). Specifically, we used
the version found in the MXR Distortion+2 pedal, which features
an op-amp driving circuit preceding the diode clipper stage. The
second circuit modeled was the Ibanez Tube Screamer3 overdrive
pedal [23]. This circuit has two stages: an active non-inverting
overdrive stage and a tone section.

Due to time and scope limitations, our experiments were con-
strained to the static parameter case, commonly known as a pro-
file. Perspectives on incorporating parameter data into the pro-
posed structure are provided in Sec. 7. For the diode clipper, we
set the gain of the driving stage to minimum to bypass any poten-
tial clipping from the op-amp, instead driving the circuit via the
level of the input signal. For the overdrive pedal, saturation was
set to maximum while the tone control was set to 50%.

5.2. Measurement Signal

Given the musical nature of the examined circuits, the measure-
ment signal consisted of a mixture of guitar and bass guitar record-
ings. Additionally, following the recommendations in [9], we in-
cluded white noise band-limited to 22 kHz and a series of 10-
second logarithmic sine sweeps with varying peak levels. Each
sweep spanned from a minimum frequency of 20 Hz to a maxi-
mum frequency of 10 kHz. The total duration of the measurement
signal was approximately 5 minutes and 30 seconds.

5.3. Measurement Setup

The two pedals were measured using an RME Fireface UCX II
audio interface as follows. The measurement signal was sent to a
stereo output on the interface. The left output channel was routed
back into the interface via one of the inputs, while the right output
was connected to the pedal. The pedal’s output was then routed to
a second input on the interface. This loopback configuration cap-
tures a reference copy of the input signal "as seen" by the audio
circuit. This reference is essential, as it ensures that both input
and output recordings are perfectly time-aligned, thereby account-
ing for any latency introduced by the measurement setup. Such
configuration is standard practice in black-box modeling, as docu-
mented in [18]. All measurements were performed at a sample rate
of 96 kHz. This sample rate was chosen as it provided a good level
of aliasing suppression when combined with first-order ADAA, as
will be shown in Sec. 6, thus removing the need to operate at a
higher sample rate.

5.4. Network Initialization

During our experiments, we observed that the distribution of the
elements of Λ tended to converge to values in the range [0.8, 1.0),

2www.electrosmash.com/mxr-distortion-plus-analysis
3www.electrosmash.com/tube-screamer-analysis

i.e., close to the unit circle. Therefore, following [10] we initial-
ized our matrix Λ with values within this range by setting our train-
able vector

ν log = log

(
−1

2

(
α(1− 0.82) + 1

))
, (15)

where α is a vector sampled from a normal distribution. The nor-
malization vector γ log was then initialized as

γ log = log

(√
1−

∣∣exp(− exp(ν log)
)∣∣) . (16)

Matrices B, C, and D were initialized as described in Appendix
A of [10] by simply ignoring the complex part.

5.5. Training Details

Models were trained in PyTorch for a total of 300 epochs using
the AdamW optimizer with the default weight decay of 0.01. We
employed a cyclic cosine annealing scheduler with a learning rate
varying from a minimum of 10−4 to a maximum of 5 × 10−4,
where each cycle consisted of 100 epochs. A warmup phase of 20
epochs was also applied. To train the real LRU blocks, we used
the open-source parallel scan implementation “mamba.py” [24].
Trainings were done on an Nvidia Tesla V100 Graphics Processing
Unit (GPU), with all of them lasting under an hour each.

Two loss functions were used. The primary loss was the Error-
to-Signal Ratio (ESR), which has been previously employed in
black-box VA modeling applications [5]:

EESR =

∑L−1
n=0

(
Yn − Ŷn

)2

∑L−1
n=0 Y

2
n

, (17)

where Y is the target signal and Ŷ is the output of the proposed
network, for a sequence of L samples.

A second frequency-domain loss was introduced to empha-
size the frequency regions of interest. For this purpose, we em-
ployed a Mel-spectrogram-based loss, which converts both the tar-
get and predicted signals to the frequency domain using a Short-
Time Fourier Transform (STFT) and maps the resulting frequen-
cies to the Mel scale, which approximates human pitch perception.
We used an implementation similar to that provided by Steinmetz
and Reiss in the auraloss repository4 [25].

The measured audio data was normalized to unit variance and
split 80–20 for training and validation, respectively. The validation
dataset consisted of guitar and bass guitar recordings exclusively.
A dedicated third dataset for testing was not used since the models
were also tested in real-time. Audio was segmented into sequences
of 4096 samples, and a fixed batch size of 128 was used across all
trainings. These two parameters were chosen to achieve a good
balance between the number of batches per epoch, frequency res-
olution, and training time. At a sample rate of 96 kHz, the chosen
sequence length (approx. 43 ms) can, at least in theory, capture fre-
quency content from approximately 23 Hz. We experimented with
longer sequence lengths and found that while the network could
handle them, the reduction in the number of batches resulted in
fewer parameter updates per epoch, which negatively affected the
training outcome. Ultimately, we settled on these parameters em-
pirically, as they provided a good balance on the number of batches

4https://github.com/csteinmetz1/auraloss
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Num. of Train Val.
Device N H D Params Loss Loss

DC 1 1 1 9 0.1422 0.0362
DC 2 2 1 24 0.0231 0.0097
DC 2 2 3 64 0.0114 0.0095
DC 4 4 1 72 0.0106 0.0095
DC 4 4 3 200 0.0093 0.0083

OD 8 4 1 112 0.1290 0.0789
OD 8 4 6 632 0.0084 0.0040
OD 12 6 1 228 0.1651 0.0857
OD 12 6 3 660 0.0116 0.0061
OD 16 8 1 384 0.1077 0.0714
OD 16 8 3 1120 0.0144 0.0044
OD 32 12 3 3024 0.0082 0.0040
OD 32 12 6 6024 0.0056 0.0031

Table 1: Total parameter count, and training and validation loss
values for different network sizes trained on the diode clipper (DC)
and overdrive (OD) data.

per epoch given the amount of data available. However, for mod-
eling tasks involving more data (e.g. when parametric data is also
available), we recommend increasing sequence length.

The LRU blocks in the proposed structure require a few sam-
ples of audio processing to “stabilize”. This is normal behavior in
recursive systems. In [5], for instance, the authors propose running
their RNNs for 1000 samples prior to the start of the parameter
updates. In our case, we found it sufficient to ignore the first 100
samples of each sequence before evaluating the loss functions.

6. RESULTS

In this section we present the outcome of our trainings. Addi-
tionally, we validate the antialiasing approach used and provide
reference measurements regarding the time performance of the
proposed model both during training and in a real-time inference
scenario. Supporting materials, including, sound example can be
found in the accompanying repository5.

6.1. Training Results

Table 1 presents the results of various training experiments con-
ducted on the two circuits. We explored different combinations of
the network hyperparameters N , H and D to assess their impact
on the total network parameter count and loss values. The last two
columns on the table report the training and validation loss values,
respectively, averaged over the final 10 epochs of each training.
Note that for the validation loss, only the ESR loss is reported,
which explains why these values are generally lower. We have
highlighted loss values below < 0.01 as these correspond to a loss
of less than 1% for the case of the validation loss (i.e. over 99%
accuracy).

For the diode clipper circuit, these results indicate that net-
works with state sizes N ≥ 2 perform well, which is consistent
with expectations for a second-order structure. We observe how,

5https://github.com/fabianesqueda/
dafx25-va-modeling-lrus

as expected, increasing the network size results in lower loss val-
ues. In particular, the 4×4×3 model (i.e. N×H×D) achieves both
training and validation loss values below 0.01. This finding sup-
ports the notion that the learned state size can be (and usually is)
significantly larger than the real state size. Informal listening tests
further confirmed that all models, except for the baseline 1×1×1
model, produced outputs that were perceptually very close to the
reference data.

While the proposed structure successfully replicates the be-
havior of the target diode clipper circuit with relative ease, we ac-
knowledge that the filtering effects of the specific unit we modeled
may not be as pronounced as those of other diode clipper variants.
During this work we did not trace or perform any kind of circuit
analysis of the circuits under study. However, as a simple case
study we believe these results to provide a useful baseline for our
method.

Moving on to the overdrive circuit, the training results tell a
different story. For this circuit, we were unable to generate accu-
rate models for state sizes lower than N = 8, a significant dif-
ference w.r.t. the diode clipper. This result is supported by the
knowledge that the overdrive pedal is larger and provides more fil-
tering than the clipper, which results in a more dynamic behavior.
Nevertheless, it is once again evident that the learned state size ex-
ceeds the assumed physical state size. A particularly interesting
result is the fact that model 8×4×6, with only 632 parameters,
performed just as well as model 32× 12× 3, which is nearly 5
times as large. This result highlights the expressive power con-
tributed by the depth parameter, as described in [10]. As with the
previous circuit, models with validation loss values < 0.01 were
found to sound good during informal listening tests and real-time
evaluations. These results serve as proof-of-concept that the pro-
posed architecture is capable of learning the nonlinear dynamics
of analog distortion circuits.

6.2. Antialiasing

Figure 3 shows spectrograms for a 10-second unit-gain linear sine
sweep ranging from 20 to 20,kHz processed by the 8×4×6 over-
drive model with and without first-order ADAA (14). As shown,
the signal processed without ADAA suffers from high levels of
aliasing distortion, with the aliases that fall below the fundamental
frequencies being particularly problematic. In contrast, the bottom
spectrogram demonstrates that the proposed method effectively re-
duces the overall level of aliasing. The remaining aliases could be
further attenuated via higher-order ADAA. However, this is not
explored further in this work.

We further examine the effect of ADAA by observing the mag-
nitude spectra shown in Fig. 4. Here, we display the spectra of
a 4186 kHz sine wave (the highest fundamental frequency on the
piano) processed both with and without first-order ADAA. The
direct implementation exhibits a significant concentration of au-
dible aliasing below approximately 1 kHz, with one alias notably
near the –20,dB mark. In contrast, the antialiased version shows
a much cleaner spectrum, with most aliasing components falling
below approximately –60,dB. During informal listening tests, we
confirmed–using the sine sweep signal depicted in Fig. 3–that the
proposed overdrive model does not exhibit perceivable aliasing up
to fundamental frequencies of at least 5 kHz.
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Figure 3: Spectrogram for a linear sine sweep processed by the
overdrive model (top) directly and (bottom) with first-order ADAA.
Lowest visible amplitude is –80 dBFS.

6.3. Time Evaluation

Lastly, we examine the time performance of the method during
training inside PyTorch and during inference in a real-time C++
environment. For the first test, we measured the time it takes for
different network sizes to implement a forward pass on a single
batch of data. This provides a rough estimate of how the net-
work hyperparameters N , H and D influence training times. All
measurements were conducted under identical conditions, using a

Figure 4: Magnitude spectrum of a single 4186-Hz sinewave pro-
cessed by the proposed 8×4×6 overdrive model implemented (top)
directly and (bottom) using first-order ADAA. Red crosses indicate
non-aliased components.

N H D Parameters L Time (ms)
32 12 1 1024 4096 6.70
32 12 3 3024 4096 15.9
64 12 1 1856 4096 6.10
64 12 3 5520 4096 15.0
64 12 6 11016 4096 29.4
64 12 6 11016 9600 36.1
64 12 6 11016 96000 45.7

Table 2: Average processing times during training for a single
batch of data for different network sizes and sequence lengths.

fixed batch size of 128. The results are presented in Table 2, with
recorded times averaged over 10 executions.

These results show that the batch processing times for the pro-
posed architecture scale linearly with the hidden size H and depth
D, while changes in N appear to have minimal impact on perfor-
mance when doubled. Next, we observe the effect of increasing
sequence length to 100 ms (9600 samples) and 1 s (96000 sam-
ples). As shown by these measurements, increasing the sequence
length by 234% only increases the batch processing time by 23%.
Further increasing the sequence length by 10 times only increases
processing time by approx. 27%. These results demonstrate how
the LRU block benefits from the unrolling approach discussed in
Sec. 2 and the use of the parallel scan function. In contrast, if the
LRU block were to be trained sequentially, batch processing times
would scale linearly with sequence length.

It should be noted that these numbers are provided for ref-
erence only, with the primary goal of illustrating how the per-
formance of the proposed architecture scales with hyperparame-
ters N , H , D and L. In practice, processing times will depend
greatly on the hardware used and may also vary across different
ML frameworks.

Lastly, the peformance of the proposed architecture was eval-
uated in a real-time scenario. The models (with ADAA) were im-
plemented in C++ using the JUCE6 framework, which allows us
to build and deploy our models as VST plugins. The Eigen li-
brary was employed to implement the matrix-vector operations in
a vectorized manner. All measurements were performed inside
Ableton Live on a 2023 MacBook Pro with an Apple M2 Pro pro-
cessor using JUCE’s integrated “Performance Counter”. During
our initial experiments on real-time deployment we considered us-
ing an off-the-shelf ML inference engine such as ONNX Runtime
7. However, we ultimately decided against this option and opted
for a custom implementation due to real-time safety concerns [26].

Table 3 presents the processing times (in ms) for a single audio
buffer for four different network sizes. Times were averaged over
100 executions. A fixed buffer size of 128 samples was used across
all measurements. The last column shows the processing cost of
the proposed networks relative to the available budget per second,
which is a function of both the buffer size and the sample rate. As
shown in this table, all models are highly efficient and suitable for
real-time operation; even the largest model considered in this study
(32×12×6) exhibits a relative processing usage of under 5%. It is
worth highlighting that these figures only reflect audio processing
costs and do not account for additional processes.

6juce.com
7onnxruntime.ai/
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Avg. Proc. CPU
N H D Parameters Time (ms) Usage
8 4 6 632 0.012 0.9%
16 8 3 1120 0.018 1.35%
32 12 3 3024 0.030 2.26%
32 12 6 6024 0.059 4.40%

Table 3: Measured real-time processing times and CPU usage for
a 128-sample buffer of audio for four network architectures.

7. CONCLUSION

In this work, we proposed the use of real LRUs to model audio dis-
tortion circuits. LRUs are an attractive choice for this task because,
like most SSM models, they can be efficiently trained using paral-
lelization techniques such as the parallel scan algorithm. Building
upon the work of [10], we developed a neural network architecture
composed of real LRU stages interleaved with streamlined non-
linear processing blocks. We showed that the proposed approach
yields accurate models through two case studies involving two
guitar distortion circuits. Moreover, the decoupling of the linear
and nonlinear components in our structure naturally facilitates the
integration of the ADAA technique. This approach helps reduce
the oversampling requirements of the system and lowers computa-
tional overheads. The proposed method yields models that can be
run in real-time inside modern digital production environments.

Regarding future work, an immediate open question is how to
incorporate parameter data into the modeling structure. For exam-
ple, [11] proposes using Feature-Wise Linear Modulation (FiLM)
conditioning. Although we experimented with this approach to
varying degrees of success, we found that FiLM conditioning sub-
stantially increased the hidden state and depth requirements of the
network, leading us to question its overall efficacy. We hypothe-
size that integrating the parameter data directly into the LRU ma-
trices could provide a more accurate representation of the circuit’s
internal behavior, where parameter changes directly affect the sys-
tem matrices. However, due to the limited scope of this work, we
leave this investigation for future research.
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