
Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

EMPIRICAL RESULTS FOR ADJUSTING TRUNCATED BACKPROPAGATION THROUGH
TIME WHILE TRAINING NEURAL AUDIO EFFECTS

Yann Bourdin

Arturia
Montbonnot-Saint-Martin, France
Astral Inria Team, Inria Bordeaux

Talence, France
yann.bourdin@arturia.com

Pierrick Legrand

IMS, UMR CNRS 5218
ENSC, Bordeaux INP

Astral Inria Team, Inria Bordeaux
Talence, France

pierrick.legrand@ensc.fr

Fanny Roche

Arturia
Montbonnot-Saint-Martin, France
fanny.roche@arturia.com

ABSTRACT

This paper investigates the optimization of Truncated Backprop-
agation Through Time (TBPTT) for training neural networks in
digital audio effect modeling, with a focus on dynamic range com-
pression. The study evaluates key TBPTT hyperparameters – se-
quence number, batch size, and sequence length – and their influ-
ence on model performance. Using a convolutional-recurrent ar-
chitecture, we conduct extensive experiments across datasets with
and without conditioning by user controls. Results demonstrate
that carefully tuning these parameters enhances model accuracy
and training stability, while also reducing computational demands.
Objective evaluations confirm improved performance with opti-
mized settings, while subjective listening tests indicate that the
revised TBPTT configuration maintains high perceptual quality.

1. INTRODUCTION

Audio effects are vital in shaping music, influencing timbre, dy-
namics, and spatial traits in both production and performance. Ini-
tially developed with analog circuitry, digital emulation is now im-
portant for its portability, flexibility, and lower cost. However, cap-
turing analog devices’ unique sonic traits digitally is challenging
due to their nonlinear and time-dependent behaviors. Traditional
modeling methods include white-box, gray-box, and black-box
approaches [1]. White-box modeling uses precise mathematical
descriptions of components, offering accuracy but requiring deep
knowledge and high computational cost. Black-box methods repli-
cate effects based on input-output data without detailed internal
understanding. Gray-box models merge both approaches, integrat-
ing partial system knowledge with data-driven techniques. Deep
learning has emerged as a promising black-box method for audio
effect modeling, enabling neural networks to learn complex sig-
nal transformations only from input/output recordings, removing
the need for handcrafted equations, extensive tuning, and in-depth
hardware knowledge. Despite its potential, challenges remain in
modeling effects with parameters and long time dependencies.

This work builds on [2], focusing on Dynamic Range Com-
pression (DRC). A compressor modifies an audio signal’s dynam-
ics by applying time-varying gain reduction based on the input
or sidechain signal’s level. The nonlinear, time-dependent, time-

Copyright: © 2025 Yann Bourdin et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

invariant1 nature and parameter conditioning of compressors make
them relevant for this research. A compressor’s behavior is mainly
governed by four parameters: Threshold, defining the level above
which gain reduction is applied; Ratio, determining attenuation de-
gree; Attack time, controlling how quickly compression starts; and
Release time, setting how gradually gain reduction is lifted when
the signal drops below the threshold. Neural modeling of DRC has
been explored using various architectures, including auto-encoders
in the spectral domain [3], convolutional networks [4], recurrent
networks [5], and convolutional-recurrent networks [6, 7, 2]. How-
ever, large attack and release times introduce long time dependen-
cies, complicating modeling due to the need for handling exten-
sive audio sequence lengths. In [2], the State Prediction Network
(SPN) was introduced to efficiently train recurrent networks with
long time dependencies. This convolutional neural network pre-
dicts the model’s initial states, replacing the processing needed
to warm up these states, thus reducing training times. However,
state prediction can increase error in inference compared to train-
ing due to exposure bias [8], i.e., exposure to ground truth dur-
ing training. This discrepancy motivates reducing reliance on the
SPN through an approach derived from Truncated Backpropaga-
tion Through Time (TBPTT) [9], to be introduced in Section 2.
While commonly used, TBPTT parameters are typically set em-
pirically. In Section 3, our main contribution is to demonstrate,
by training numerous models, the critical importance of properly
setting these parameters alongside the batch size. Our results are
validated by an objective evaluation and a subjective listening test.

2. METHODS

2.1. Model Architecture

The architecture we focus on, SPTMod (Series-Parallel Tempo-
ral Modulation), is a convolutional-recurrent network initially de-
signed for DRC, as introduced in [2]. It is similar to the GCNT-
FiLM model [7] but is lighter as it involves fewer nonlinear oper-
ations. As shown in Figure 1, SPTMod’s backbone includes two
paths: the modulation path and the audio path. The modulation
path comprises blocks called ModBlock (typically 3 blocks, see
Section 2.4.5) that calculate modulations for the audio path ten-
sors via Feature-wise Linear Modulation (FiLM) operations [10].
These operations scale and shift tensor channels using modulation
tensors. Since the target effect is a compressor, to ensure the final
audio output is not degraded, the audio path performs only am-
plitude modulation through Temporal FiLM (TFiLM) operations.

1The compression parameters do not vary over time, but the gain re-
duction depends on the past of the input or sidechain signal.

DAFx.1

yann.bourdin@arturia.com
mailto:pierrick.legrand@ensc.fr
fanny.roche@arturia.com
http://creativecommons.org/licenses/by/4.0/

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

Block #2

Block #1

1D Conv.

PReLU

1D Pooling

LSTM

Linear Interp.

Crop

1x1

Crop

1x1

Linear

PReLu

Linear

PReLu

Linear

controls initial state

...
+

Linear

PReLu

Linear

PReLu

Linear

controls

1D Conv.

PReLU

1D Pooling

 channels
 samples

 channels
 samples

Block #
 channels

 sample

SPN Block

SPN Block

...

SPN Block

ModBlock

ModBlock

......

ModBlock

Lin
ear

initial state

initial state

initial state

1D Conv.

PReLU

Cached Pad.

1D Pooling

LSTM

Linear Interp.

Crop

1x1

Crop

1x1

Cached Pad.

Linear

PReLu

Linear

PReLu

Linear

controlsinitial state

Linear
PReLu
Linear
PReLu
Linear

controls

1D Conv.

1D Pooling

PReLU

Figure 1: State prediction network (SPN) and SPTMod

1D Conv.

PReLU

Cached Pad.

1D Pooling

LSTM

Linear Interp.

Crop

1x1

Crop

1x1

Cached Pad.

Linear

PReLu

Linear

PReLu

Linear

controlsinitial state

Linear
PReLu
Linear
PReLu
Linear

controls

1D Conv.

1D Pooling

PReLU

1D Conv.

PReLU

Cached Pad.

1D Pooling

LSTM

Linear Interp.

Crop

1x1

Crop

1x1

Cached Pad.

Linear

PReLu

Linear

PReLu

Linear

controlsinitial state

Linear
PReLu
Linear
PReLu
Linear

controls

1D Conv.

1D Pooling

PReLU

Figure 2: State Prediction Block (SPN Block, on the left side), and
Modulation Block (ModBlock, on the right side).

Though the architecture avoids convolutional layers in the audio
path, adding them could enable dynamic convolution for model-
ing other audio effects [7, 11]. Each modulation block, detailed
in Figure 2, starts with a 1D convolutional layer followed by a
Parametric Rectified Linear Unit (PReLU) activation. The out-
put is processed by a TFiLM sub-block, which includes a pooling
layer for downsampling, followed by a Long Short-Term Memory
(LSTM) layer. This is complemented by a FiLM operation, trans-
forming user controls via a two-layer neural network. A linear
interpolation layer for upsampling concludes TFiLM to compen-
sate for pooling. Two 1D convolutional layers with a kernel size
of 1 (‘1x1’) adjust channel count before FiLM operations, yield-
ing tensors sj and xj . Note that the LSTM layer, being recurrent,
has an internal state whose initial value should be seen as an input
to the modulation block. Cropping and cached padding layers are
detailed in Section 2.4.1.

Proper initialization of the LSTM layers’ initial states is cru-
cial due to the effect’s time dependency. We use the State Pre-
diction Network (SPN), as introduced in [2] and shown in Figure
1, to address this. Typically, states are initialized with a warm-up
method, processing a number of samples before gradients are reg-
istered. However, for effects with long time dependencies, even
longer than the sequence length used for training, the warm-up

length can become computationally expensive. The SPN suits
these cases by efficiently reducing tensor size exponentially. The
SPN receives inputs and reference outputs of lengths close to the
effect’s time dependency and predicts the state values the model
would generate processing this input. Designed like a convolu-
tional network performing classification, it consists of blocks, each
with a 1D convolution, a PReLU activation, and a pooling layer,
as seen in Figure 2. The SPN is also conditioned by user con-
trols through the same FiLM method as used in the modulation
blocks. After each pooling layer, the intermediary tensor’s tem-
poral length is divided by a factor, shrinking it exponentially with
block depth. The final SPN block reduces the length to one, result-
ing in a batched vector. A final linear layer transforms this vector
to match the sum of state sizes, allowing initial states of the model
to be derived from slices of this vector.

An implementation of SPTMod is provided at the accompany-
ing repository.2

2.2. Loss

The loss function used here mirrors [2], comprising two time-
domain terms, Mean Absolute Error (MAE) and Error-to-Signal
Ratio (ESR), a spectral-domain term, Multi-Resolution Short Term
Fourier Transform (MR-STFT) spectral loss [12], and an energy-
based term, Multi-Resolution Energy Error-to-Signal Ratio (MR-
EESR) [2]. Equations (1) and (2) define the MAE and ESR:

LMAE =
1

L

L−1∑
t=0

|ŷ[t]− y[t]|

(1)

LESR =

∑L−1
t=0 (y[t]− ŷ[t])2∑L−1

t=0 y[t]2

(2)

The STFT loss, given by (3), includes the STFT convergence
and STFT magnitude terms:

LSTFT =
|| |Y | − |Ŷ | ||F

|| |Y | ||F
+

1

L
|| log(|Y |)− log(|Ŷ |)||1 (3)

where Y and Ŷ are the STFTs of y and ŷ, and ||.||F is the Frobe-
nius norm. MR-STFT averages several STFT losses using differ-
ent window sizes (512, 1024, 2048, i.e. 12, 23 and 46 ms with a
sample rate of 44100 Hz). EESR is defined in (4):

LEESR =
1

K

K−1∑
k=0

|Êk − Ek |
Ek

with Ek =
1

W

(k+1)W−1∑
τ=kW

y[τ]2

(4)
where W is the window size and K = ⌊L/(W/4)⌋, correspond-
ing to a 75% overlap. MR-EESR averages several EESR losses
with the same W values as MR-STFT. The final loss is the sum
of 100LMAE, LESR, LMR-STFT, and LMR-EESR. The factor of 100
balances the magnitude of these terms at training start.

2.3. Dataset

2.3.1. Source Audio

The input audio files in our study consist of several sequences.
Each file starts with a 1000 Hz pure tone, where the amplitude
varies in 1 dB steps from -39 dB to 0 dB. These steps are orga-
nized into four groups of ten, each lasting 0.25 seconds, and sep-
arated by -40 dB steps lasting 0.5 seconds, creating a 16-second
sequence. These quieter steps trigger the release phase of the com-
pressor. Next, the file includes several 4-second excerpts randomly

2https://github.com/ybourdin/sptmod

DAFx.2

https://github.com/ybourdin/sptmod

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

selected from the Free Music Archive dataset [13], which contains
diverse musical tracks. Each excerpt is normalized to a maximum
peak of 0 dB, and this 40-second sequence’s peak amplitude de-
creases gradually from 0 dB to -20 dB. The file concludes with
two 20-second sequences of procedurally generated sounds. The
first sequence has many sound events with few silence, while the
second spaces the sound events with low-amplitude noise to cap-
ture the compressor’s release phases. The sound events are created
using randomized Attack-Decay-Sustain-Release envelopes mod-
ulating sounds among a white noise generator; an oscillator with
three harmonics subject to random parameters and waveshaping;
and finally linear and exponential chirps with randomized initial
and target frequencies.

2.3.2. Parameter Sampling

Our work models the API-2500+ compressor, including most of
its controls: Threshold, Attack, Ratio, Release, and Knee, plus the
Thrust control, which enables high-pass filtering after gain detec-
tion. We focus on mono effects, so stereo controls are ignored.
The compressor also has a ‘tone type’ control, which switches be-
tween feed-forward (‘new’) and feed-back (‘old’) configurations;
our study only considers feed-forward. The parameters are dis-
crete except the Threshold, continuous between -20 dB and +20
dB, which we discretize into 4 dB increments. We represent these
controls as a vector of normalized values from 0 to 1.

Three datasets were recorded, with the described source au-
dio but using different parameter sampling strategies. The first is
a ‘snapshot’ dataset with 16 items recorded with a single configu-
ration of controls. Here, all controls are set to their middle values
except for the release control, which is set to maximum, posing
a challenging task due to the long time dependency. The second
dataset is a limited full-modeling set, where only the Threshold
and Ratio parameters vary while other controls remain identical to
those in the snapshot dataset. This dataset also contains 16 items,
with Threshold values at 4, 0, -4, and -8 dB, and Ratio values at 3,
4, 6, and 10. A third dataset is the full-modeling dataset consid-
ered in [2], containing 160 items. Parameters in this dataset were
sampled using Latin Hypercube Sampling, to facilitate a unique
train-validation-test split, ensuring that each subset was represen-
tative of the control parameter distributions.

The recordings were made using an Arturia AudioFuse sound
card, at a sample rate of 44100 Hz. The output of the sound card,
which is the compressor input, is looped back to the sound card.
The slight DC biases of the card’s inputs are removed in post-
processing by substracting the mean out of each recording.

2.3.3. Cross-Validation

In supervised learning, the goal is to train a model that performs
accurately on unseen data from the same distribution as the train-
ing dataset, minimizing the expected risk E(x,y)∼D[e(h(x), y)],
where D is the data distribution, e is a metric, and h is the model
[14]. The standard practice is dividing the dataset into three sub-
sets: training, used by the optimization algorithm; validation, to
monitor generalization and prevent overfitting; and test, for final
evaluation. Selecting these subsets is essentially a realization of a
random variable, as it involves sampling from the full data distribu-
tion D. The training pipeline also faces variance from sources like
initial model weights and batches constitution and order. Thus,
evaluating a single model instance should be seen as a realiza-
tion of a random variable [14], and training a model once does

not reliably estimate risk or allow meaningful model comparisons.
Cross-validation offers a better risk estimate by training multiple
instances on different splits. However, due to the high training
cost of deep networks, most studies train models once on a single
split. In this work, we extracted 10 train-validation-test splits from
each dataset by shuffling items before splitting. For the snapshot
and Threshold-Ratio datasets, each with 16 items, we shuffled and
split the items into 8 training, 4 validation, and 4 test items, repeat-
ing 10 times. For the third dataset (full-modeling) with 160 items,
the list was split into 128 training, 16 validation, and 16 test items.

2.4. Training

2.4.1. Temporal Operations and Cached Padding

In convolutional neural networks, operations like convolutions and
pooling alter the temporal length of inputs. Convolutions with ker-
nel size k (dilation and stride 1) reduce input length by k − 1
samples, while pooling divides it by a factor. Though shorter out-
puts help in tasks like classification, audio effect modeling needs
the model output to match the input length. Zero-padding is a
common solution to this mismatch but can complicate inference,
causing discontinuities at the start of output buffers when process-
ing sequential sample buffers. To solve this, [15] suggests cached
padding, storing the last samples of an input tensor in cache before
applying a temporal operation, so these samples can be used for
padding in subsequent operations.

Cached padding is effective with consecutive buffers but still
relies on zero-padding when the cache is not initialized, e.g. at
the start of a training batch. Using zeros instead of actual sam-
ple values can introduce bias, especially when large numbers of
zeros are used relative to the input length. Moreover, models like
Temporal Convolutional Networks (TCNs) [4] with large receptive
fields may compute outputs predominantly from zeros rather than
true signal values, necessitating large sequence lengths in train-
ing batches. In [2], zero-padding was avoided by calculating input
samples required by a model to achieve the desired output length.

Models with binary operations involving 1D tensors, like skip
connections, need identical tensor lengths. In SPTMod, this oc-
curs with TFiLM operations following each ModBlock. Without
padding, tensors often differ in length, necessitating cropping lay-
ers to trim the longer tensor (on its left-hand side, for causality)
to match the shorter one. Determining input lengths and cropping
sizes presents an optimization challenge. The goal is to minimize
cropping sizes (which must be non-negative) while ensuring that
the input tensor lengths of the binary operations are equal, and that
the input lengths of pooling layers are multiples of the pooling size.
An optimization algorithm can solve this for any architecture and
fixed hyperparameters. For architectures like SPTMod, we derived
an optimal solution, detailed at our accompanying repository, de-
pending on the pooling size and the convolution hyperparameters.

2.4.2. Windowed Target and Streamed Target

The use of models with recurrent layers varies between training
and inference. During training, models often process nonconsecu-
tive batches of sequences, as datasets typically consist of long se-
quences that are sliced and shuffled during training. Consequently,
internal states may not persist across iterations. The Windowed
Target (WT) error [3] measures a metric (e.g., loss) like during
training. In contrast, during inference, models still process inputs
in a windowed fashion, yet states are not reset between batches,

DAFx.3

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

lookback
samples

input
batches

states

1 2 3

cumulated length

State
Prediction
Network

output
batches

Figure 3: Diagram of intermediary tensor lengths for consecu-
tive (non-overlapping) sequence batches in our TBPTT-based ap-
proach with N = 3. In the first iteration, no padding is applied, so
the input length includes the samples needed for temporal opera-
tions. In subsequent iterations, states and caches are retained, but
their gradients are detached from the computational graph.

corresponding to the Streamed Target (ST) setting. The ST error
provides a more accurate user-observed metric. Ideally, minimiz-
ing WT error during training should generalize to minimizing ST
error during inference, especially via techniques like warm-up or
SPNs. However, previous work [2] showed ST error can increase
compared to WT error when using state prediction. It was hy-
pothesized this is due to exposure bias: models do not learn to
recover from erroneous state values. Two strategies are possible
to reduce reliance on the SPN, mitigating exposure bias: reset-
ting states less often, and/or avoiding SPN overfitting. The first
strategy can be done by increasing sequence length, though this
raises computational costs and reduces weight update frequency.
The second strategy uses regularization techniques like dropout to
prevent overfitting state predictions.

2.4.3. Truncated Backpropagation Through Time

Recurrent networks can be trained by updating weights after each
processed time step, but this is computationally expensive and lim-
its the loss function to sample-to-sample differences. More com-
monly, recurrent networks process full sequences before updating
weights with Backpropagation Through Time (BPTT) [16]. How-
ever, very long sequences result in infrequent weight updates.

Truncated BPTT (TBPTT) [9] improves efficiency by splitting
long sequences into smaller ones, updating weights after process-
ing each smaller sequence while preserving recurrent layer states.

We propose an optimization strategy based on TBPTT, de-
tailed in Figure 3. This strategy introduces two hyperparameters:
N , number of sub-sequences, and L, sub-sequence length, allow-
ing us to define the cumulative length Lc as Lc = N · L. The
strategy divides training into groups of N iterations, processing a
cumulative sequence with TBPTT. In the first iteration, padding
is not used, so the input length Lnopad must be adjusted to achieve
an output length equal to L. The SPN initializes states, requiring
Llookback samples. Thus, the input buffer length for the first itera-
tion is L0

in = L+max(Lnopad−L,Llookback). The SPN receives the
first Llookback samples, while the effect processor network receives

the last Lnopad samples and generates L output samples. In subse-
quent TBPTT iterations, the SPN is not used and cached padding
is employed, making input length equal to output length L.

To form batches, the dataset is divided into long sequences of
length L0

in + (N − 1) · L with a step of Lc. At the start of each
epoch, sequences are shuffled and batches formed. These batches,
containing long sequences, are further sliced into N batches of
shorter consecutive sequences of lengths (L0

in, L, ..., L). Every N
iterations, states and caches are reset, since a new batch from a
different long sequence is processed.

2.4.4. Training Procedure

The models and their training are implemented using the PyTorch
deep learning library. We use the Adam optimizer with its de-
fault parameters and a learning rate set to 5× 10−4. Due to vary-
ing batch sizes and sequence lengths in this work, the number of
batches per epoch also varies. At the end of each epoch, we mea-
sure the validation loss in both WT and ST modes. We use early
stopping, halting training if the ST validation loss does not im-
prove over 76800 iterations, with a cap of 1 million iterations.

2.4.5. Hyperparameters

SPTMod involves hyperparameters which are the number of mod-
ulation blocks and, within each block, parameters related to the
convolutional layer: the number of channels, kernel size, and di-
lation size. Additional hyperparameters include the pooling size,
LSTM hidden size, and the number of hidden neurons in the FiLM
conditioning layer.

In [2], a hyperparameter search led to a setup with 3 modula-
tion blocks. The convolutional layer in each block has 21, 19, and
32 output channels respectively, with kernel sizes of 9, 29, and 25.
The pooling size is set to 95, the LSTM hidden size is 31, and the
FiLM hidden layers have 26 neurons. The SPN has 7 blocks with
16 channels, a kernel size of 38, a pooling size of 4, and a hidden
layer size of 8 in FiLM, achieving a lookback length of ∼5 sec-
onds. This model configuration is called SPTMod24. Note that
within our framework, the pooling size must be a divisor of the
sequence length; thus, we set the pooling size to 64 instead of 95
in SPTMod24.

In this study, we explore different hyperparameters in a model
called SPTMod25. This model has 4 modulation blocks, each with
15 output channels and a kernel size of 3 in the convolutional lay-
ers, and 32 neurons in the FiLM hidden layers for both modulation
and SPN blocks. The other hyperparameters are identical to those
used in SPTMod24. This configuration was chosen to investigate
the impact of model depth over width, hypothesizing that increas-
ing the number of blocks to 4 with simpler hyperparameter choices
could offer similar or improved performance without the computa-
tional cost of an extensive hyperparameter search. The shrinkage
in model width (number of channels) led to roughly a 10x reduc-
tion in multiply/add operations.

3. EXPERIMENTS AND RESULTS

3.1. Adjusting Truncated Backpropagation Through Time

TBPTT highlights two key hyperparameters: number of sequences
N and sequence length L. The choice between BPTT or TBPTT,
and specific values for N and L, is empirical and varies across
studies modeling audio effects with recurrent layers. For instance,

DAFx.4

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

[17] and [18] use TBPTT with warm-up lengths of 1000 and 4096
samples, and sequence lengths of 2048 and 8128 samples, achiev-
ing cumulative lengths of 0.5s and 2.5s, N = 10 and 13. Similarly,
[19] uses TBPTT with both warm-up and sequence lengths of 1024
samples, resulting in a cumulative length of 1s and N = 42. In
contrast, [6] and [7] do not use TBPTT or warm-up, with sequence
lengths from 1024 to 8192 samples in [6] and set to 112640 in [7].

In our preliminary testing, we assessed a grid of N and L val-
ues, maintaining a fixed batch size of 16 and using the snapshot
dataset. We found that training a neural effect in snapshot model-
ing led to faster and more stable convergence, with less variance
than in full modeling. For smaller L values (2048-8192), the loss
was notably high, likely due to low information content in a batch.
Increasing the batch size by a factor of four resulted in a final loss
closer to what was observed with larger L values. Based on this,
we included batch size B as a hyperparameter in further experi-
ments. The TBPTT experiment presented here includes both the
snapshot and Threshold-Ratio datasets, to determine if the effects
of these hyperparameters differ between snapshot and full mod-
eling. We considered the Cartesian product of N ∈ {1, 2, 3},
B ∈ {8, 16, 32, 64, 128}, and L ∈ {4096, 8192, 16384, 32768},
excluding (B,L) = (128, 32768) due to excessive memory re-
quirements that could not be met by all nodes of our heterogeneous
computing platform. For each dataset and each combination of
N , B, and L, we trained 10 model instances, one for each train-
validation-test split described in Section 2.3.3. Due to a substantial
570 training runs per dataset, we limited the experiment to the first
two datasets, excluding the large full-modeling one.

Results

The main results of this experiment are shown in tables (1-6),
which detail statistics on validation losses and training times for
both the snapshot and Threshold-Ratio datasets across all consid-
ered hyperparameter configurations. Tables 1 and 2 present me-
dian validation loss values to estimate expected model accuracy
under given (N,B,L) hyperparameters. Generally, median vali-
dation loss improves as N , B, or L increase. On both datasets,
increasing batch size has a strong impact at low Lc values, but
this effect fades as Lc rises, especially on the snapshot dataset
when Lc ≥ 32768. On the Threshold-Ratio dataset, batch size
has more impact. Increasing L consistently enhances accuracy,
while N tends to do so. Sometimes, N = 1 (i.e., without TBPTT)
results in a lower median validation loss than higher N values.
Tables 3 and 4 show the Median Absolute Deviation (MAD) values
(defined as the median of the absolute deviations from the data’s
median) of validation losses to estimate model training stability
under specific (N,B,L). Although trends are harder to discern
due to limited values for proper MAD evaluation, using TBPTT
(N > 1) typically improves MAD values. However, for high L
(thus so is Lc), small MAD values are achieved with N = 1.

Tables 5 and 6 provide median training times for each configu-
ration. Training duration is calculated by determining the number
of iterations needed to reach the minimum validation loss within
a 5% margin, then multiplying by the seconds per iteration fac-
tor. This factor was pre-evaluated in all configurations on a unique
computer with an NVIDIA L40 GPU. Higher B and L values gen-
erally increase training time due to more computation per batch,
but convergence can occur in fewer iterations and less time, as
shown when B = 8 and L rises in Table 6. Increasing N often
significantly improves training times because the SPN is invoked

only at one iteration out of N .

Discussion

The choice of (N,B,L) greatly impacts the training pipeline per-
formance, affecting accuracy, time, and stability. As predicted in
[20], larger batch sizes surpassing a critical value yield diminish-
ing returns, and the more complex the modeling task, the higher
the critical batch size. For the snapshot dataset, this critical size
is low, while it’s high in full modeling – more than expected –
as shown by the Threshold-Ratio dataset with 2 control parame-
ters. Thus, one might expect even higher ideal batch sizes for full
modeling datasets with more control parameters, like ours with 7
controls. A relevant compromise may be using large batch sizes
with low sequence lengths and high N values. Training variance,
measured by MAD values, is generally greater on the Threshold-
Ratio dataset than the snapshot one, likely due to increased data
diversity with more control parameters. Lastly, and unexpectedly,
training time is not significantly shorter with snapshot than full
modeling.

3.2. Objective Evaluation

Following the TBPTT experiment, SPTMod24 and SPTMod25
were trained and assessed on the large full-modeling dataset, un-
der 3 specific hyperparameter sets for comparison: (N,B,L) = (1,
16, 16384), mirroring [2], and two top-performing configurations,
(N,B,L) = (1, 64, 32768) and (N,B,L) = (3, 64, 32768).

SPTMod24
N = 1
B = 16

L = 16384

SPTMod24
N = 1
B = 64

L = 32768

SPTMod24
N = 3
B = 64

L = 32768

SPTMod25
N = 1
B = 16

L = 16384

SPTMod25
N = 1
B = 64

L = 32768

SPTMod25
N = 3
B = 64

L = 32768

0.15

0.20

0.25

0.30

0.35

0.40

0.45

lo
ss

Figure 4: Loss after training the 6 models on 10 splits each, evalu-
ated on their respective test subsets, depicted by markers.

Figure 4 shows all test loss values for the models considered.
Under the same (N,B,L) values as in [2], where (N,B,L) = (1,
16, 16384), SPTMod25 performs worse than SPTMod24. How-
ever, with new training hyperparameters, SPTMod24 and SPT-
Mod25 perform similarly, though SPTMod24 with (N,B,L) =
(1, 64, 32768) appears to outperform the other models. We con-
clude from this objective evaluation that training hyperparameters
N , B and L are at least as crucial as architectural ones.

3.3. Subjective Evaluation

A listening test was designed to assess the perceptual quality of the
models. For the subjective evaluation, we selected (1) SPTMod24

DAFx.5

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

L 4096 8192 16384 32768
B \ Lc 4096 8192 16384 32768

8 3.70 3.18 2.20 1.46
16 3.48 2.36 1.61 1.10
32 4.77 2.92 1.32 1.18
64 3.09 2.49 1.33 1.21
128 2.58 2.32 1.55

(a) N = 1

L 4096 8192 16384 32768
B \ Lc 8192 16384 32768 65536

8 4.70 2.52 1.49 1.23
16 3.03 2.44 1.42 1.27
32 2.51 2.10 1.46 1.07
64 2.76 1.86 1.25 1.09
128 2.67 1.65 1.34

(b) N = 2

L 4096 8192 16384 32768
B \ Lc 12288 24576 49152 98304

8 3.54 2.67 1.64 1.28
16 2.68 1.90 1.29 1.14
32 2.67 1.85 1.27 1.27
64 2.83 1.81 1.25 1.13
128 2.47 1.96 1.25

(c) N = 3

1.5

2
2.5
3
3.5
4
4.5

Table 1: Median values of the validation loss (x10) on the snapshot dataset.

L 4096 8192 16384 32768
B \ Lc 4096 8192 16384 32768

8 6.44 5.20 4.37 3.60
16 6.54 4.83 4.05 2.68
32 5.91 4.80 2.75 1.55
64 5.73 3.83 3.31 1.53
128 5.86 3.39 1.99

(a) N = 1

L 4096 8192 16384 32768
B \ Lc 8192 16384 32768 65536

8 5.47 4.53 3.72 3.18
16 5.33 4.15 2.93 2.12
32 4.76 4.00 2.47 1.78
64 4.36 3.92 1.96 1.81
128 4.33 2.71 1.98

(b) N = 2

L 4096 8192 16384 32768
B \ Lc 12288 24576 49152 98304

8 4.83 3.75 3.41 2.52
16 4.17 3.64 2.96 1.87
32 4.49 3.77 2.52 1.89
64 4.30 3.65 2.06 1.38
128 4.20 2.45 1.92

(c) N = 3

2

3

4
5
6

Table 2: Median values of the validation loss (x10) on the Threshold-Ratio dataset.

L 4096 8192 16384 32768
B \ Lc 4096 8192 16384 32768

8 0.79 0.53 0.64 0.27
16 0.65 0.52 0.18 0.10
32 1.75 0.75 0.14 0.04
64 0.44 0.61 0.12 0.16
128 0.15 0.42 0.30

(a) N = 1

L 4096 8192 16384 32768
B \ Lc 8192 16384 32768 65536

8 1.37 0.26 0.12 0.05
16 0.50 0.73 0.08 0.08
32 0.28 0.61 0.19 0.03
64 0.42 0.29 0.14 0.05
128 0.40 0.29 0.03

(b) N = 2

L 4096 8192 16384 32768
B \ Lc 12288 24576 49152 98304

8 0.55 0.85 0.17 0.08
16 0.41 0.18 0.08 0.03
32 0.40 0.37 0.12 0.06
64 0.22 0.13 0.04 0.08
128 0.16 0.36 0.06

(c) N = 3
0.03

0.1

0.3

1

Table 3: Median Absolute Deviation (MAD) values of the validation loss (x10) on the snapshot dataset.

L 4096 8192 16384 32768
B \ Lc 4096 8192 16384 32768

8 0.79 0.24 0.44 0.48
16 0.80 0.74 0.80 0.59
32 0.96 0.55 1.03 0.27
64 1.11 1.61 0.69 0.30
128 1.90 1.33 0.50

(a) N = 1

L 4096 8192 16384 32768
B \ Lc 8192 16384 32768 65536

8 0.44 0.59 0.42 0.27
16 0.62 0.51 0.51 0.38
32 0.52 0.51 0.54 0.49
64 0.47 0.56 0.28 0.24
128 0.54 0.56 0.25

(b) N = 2

L 4096 8192 16384 32768
B \ Lc 12288 24576 49152 98304

8 0.41 0.27 0.71 0.41
16 0.37 0.30 0.55 0.21
32 0.30 0.38 0.26 0.35
64 0.47 0.29 0.35 0.15
128 1.31 0.39 0.33

(c) N = 3

0.3

1

Table 4: Median Absolute Deviation (MAD) values of the validation loss (x10) on the Threshold-Ratio dataset.

L 4096 8192 16384 32768
B \ Lc 4096 8192 16384 32768

8 0.40 0.28 0.74 1.16
16 0.46 0.60 1.03 2.83
32 0.50 0.82 2.84 3.11
64 1.20 1.98 8.05 9.82
128 3.95 2.71 4.36

(a) N = 1

L 4096 8192 16384 32768
B \ Lc 8192 16384 32768 65536

8 0.53 0.47 0.64 0.82
16 0.45 0.46 0.87 1.15
32 0.87 0.91 1.27 2.82
64 1.97 1.32 1.96 5.94
128 1.61 3.79 3.40

(b) N = 2

L 4096 8192 16384 32768
B \ Lc 12288 24576 49152 98304

8 0.31 0.61 0.53 1.26
16 0.44 0.57 1.06 1.13
32 0.49 0.78 1.14 1.39
64 0.88 1.87 3.63 4.51
128 2.20 3.44 8.02

(c) N = 3
0.3

1

3

Table 5: Median values of the training time (in hours) on the snapshot dataset.

L 4096 8192 16384 32768
B \ Lc 4096 8192 16384 32768

8 0.36 0.52 0.73 0.42
16 0.45 0.57 0.77 0.90
32 0.89 1.15 2.13 3.22
64 1.50 1.67 3.88 9.74
128 1.94 4.76 11.12

(a) N = 1

L 4096 8192 16384 32768
B \ Lc 8192 16384 32768 65536

8 0.40 0.62 0.46 0.35
16 0.43 0.42 0.88 1.10
32 0.58 0.99 1.35 1.89
64 1.20 0.95 2.47 3.93
128 2.13 2.62 6.14

(b) N = 2

L 4096 8192 16384 32768
B \ Lc 12288 24576 49152 98304

8 0.55 0.52 0.68 0.54
16 0.72 0.48 0.44 1.20
32 0.57 0.81 0.81 1.36
64 0.62 0.84 2.26 2.92
128 1.00 2.90 3.83

(c) N = 3

1

3

10

Table 6: Median values of the training time (in hours) on the Threshold-Ratio dataset.

DAFx.6

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

with (N,B,L) = (1, 16, 16384), as featured in [2]; (2) SPT-
Mod25 with (N,B,L) = (1, 64, 32768); and (3) a variant of
a Temporal Convolutional Network (TCN) model [4], shown in
Figure 5, with (N,B,L) = (1, 64, 32768). This TCN variation
computes a gain reduction signal applied to the input. It serves as
a non-recurrent baseline, thus with no WT/ST difference, and is
more comparable to our model.

TCN
1x1

Figure 5: TCN variant
in the listening test

We followed the MUSHRA method
(MUlti Stimulus test with Hidden Ref-
erence and Anchor) [21], a listening test
where participants rate the perceptual
quality of multiple excerpts on a scale
from 0 to 100, relative to a reference:
the target effect’s output. The test was
conducted online via a webMUSHRA
instance [22].3 It includes outputs from
the three models, a hidden reference
identical to the provided reference, and
an anchor processed through a rough compressor implementation.
The hidden reference and anchor assess participant reliability and
their ability to distinguish excerpts. The test featured 3 input audio
excerpts: drumming, guitar strumming, and gypsy guitar playing.
We evaluated 4 compressor configurations: low attack, low attack
and release, high release, and high ‘thrust’. Each audio and control
combination was evaluated twice: once on a 4-beat excerpt (about
4 seconds) and once on a 1-beat segment (about 1 second) isolated
from the excerpt. This approach ensures participants make deci-
sions based on the same content. In total, 24 evaluation items were
assessed. To reduce test duration, items were split into two groups
of 12, with each participant receiving a random group and order,
except that a 4-beat excerpt and its 1-beat version remain consecu-
tive. Though the test was designed to last 15 minutes, participants
completed the test with unlimited time and repetitions, and the me-
dian total rating time is 26 minutes. Afterward, they reported their
audio device and answered questions about their expertise, partic-
ularly whether they had used a dynamic range compressor or had
mixing or mastering skills. Of the 29 participants, 14 met the se-
lection criteria for final results: positive responses to at least one
expertise question, use of headphones or monitoring speakers, no
more than three ratings below 90 for the hidden reference, and no
more than two ratings above 90 for the anchor. This yielded 168
item evaluations.

Results

Figure 6 shows statistics on scores given to each model. The me-
dian score of SPTMod24 is 100, indicating this model, trained with
the hyperparameters in [2], achieves excellent perceptual quality.
SPTMod25 is slightly worse, with a median score between 90 and
95, which is satisfying given its smaller size and straightforward
tuning. The TCN variant is the worst, still providing good quality
but being easier to discern. As expected, the scores assigned to the
hidden references among shorter loops (in orange) have lower vari-
ability than longer ones. Thus, more confidence should be put in
the scores given on shorter loops. In Figure 7, scores are grouped
by the parameter configurations described earlier, aligning with the
overall mean results. On the high attack time configuration (7a),
SPTMod24 achieves outstanding scores, while in the other config-
urations (7b, 7c, 7d) they are very high and similar to SPTMod25.
Although TCN performs worse overall, it still achieves relatively

3Exposed at https://ybourdin.github.io/sptmod/

SPTMod24 SPTMod25 TCN Anchor Hidden
Reference

0

20

40

60

80

100

sc
or

e

Figure 6: Scores of the listening test, split into the blue (longer
loops — 4 beats) and the orange (shorter loops – 1 beat) groups.

high scores across most configurations, particularly in the high re-
lease setting, though it struggles with the high thrust configuration.

4. CONCLUSION

This study investigated the parameters of TBPTT in the context
of training a convolutional-recurrent network for modeling digi-
tal audio effects, focusing on DRC. Our main contribution is the
empirical evaluation of TBPTT hyperparameters – namely, the
number of sequences, batch size, and sequence length – and their
effects on model accuracy, training stability, and computational
efficiency. Extensive tests with both snapshot and full-modeling
datasets show that increasing these hyperparameters generally im-
proves model accuracy and reduces training variability, though it
raises computational demands. Notably, TBPTT lowers validation
loss variance and speeds up training, potentially allowing for larger
batch sizes, which is beneficial for modeling multiple control pa-
rameters. These findings suggest that those hyperparameters are as
crucial as architectural choices for optimal performance. Objec-
tive evaluation confirms that models trained with newly optimized
TBPTT parameters perform better than prior setups. However, a
subjective listening test revealed that even previously, SPTMod24
had excellent perceptual quality, indicating the revised TBPTT
setup did not significantly impact the model’s perceptual quality.
For future work, implementing the model in C++ will allow for a
precise estimation of its computational efficiency and real-time vi-
ability, as well as enabling multi-objective hyperparameter search
that considers both model accuracy and computational cost.

5. ACKNOWLEDGMENTS

This work is part of a Cifre PhD project funded by ANRT. It ben-
efited from access to the computing resources of the ‘PLaFRIM’
and ‘CALI 3’ clusters. PLaFRIM is supported by Inria, CNRS
(LABRI & IMB), Université de Bordeaux, Bordeaux INP and
Conseil Régional d’Aquitaine. CALI 3 is operated by the Univer-
sity of Limoges and is part of the HPC network in the Nouvelle-
Aquitaine Region, financed by the State and the Region.

DAFx.7

https://ybourdin.github.io/sptmod/

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

SPTMod24 SPTMod25 TCN Anchor Hidden
Reference

0

20

40

60

80

100

sc
or

e

(a) High attack time.
SPTMod24 SPTMod25 TCN Anchor Hidden

Reference

0

20

40

60

80

100

sc
or

e

(b) Low attack and release times.

SPTMod24 SPTMod25 TCN Anchor Hidden
Reference

0

20

40

60

80

100

sc
or

e

(c) High release time.
SPTMod24 SPTMod25 TCN Anchor Hidden

Reference

0

20

40

60

80

100

sc
or

e

(d) High Thrust.

Figure 7: Scores of the listening test, grouped by parameter configuration, split into the blue (longer loops – 4 beats) and the orange (shorter
loops – 1 beat) groups.

6. REFERENCES

[1] M. Comunità, C. J. Steinmetz, and J. D. Reiss, “Differen-
tiable black-box and gray-box modeling of nonlinear audio
effects,” arXiv preprint arXiv:2502.14405, 2025.

[2] Y. Bourdin, P. Legrand, and F. Roche, “Tackling Long-Range
Dependencies in Dynamic Range Compression Modeling via
Deep Learning,” in Int. Conf., Evolution Artificielle, 2024.

[3] S. Hawley, B. Colburn, et al., “Profiling audio compressors
with deep neural networks,” in Audio Engineering Society
Convention, Oct 2019.

[4] C. Steinmetz and J. Reiss, “Efficient neural networks for
real-time analog audio effect modeling,” in Audio Engineer-
ing Society Convention, 2022.

[5] R. Simionato and S. Fasciani, “Fully conditioned and low-
latency black-box modeling of analog compression,” in Proc.
of the Int. Conf. on Digital Audio Effects (DAFx), 2023.

[6] M. Ramírez, Deep Learning for Audio Effects Modeling,
PhD Thesis, Queen Mary University of London, 2021.

[7] M. Comunità, C. Steinmetz, et al., “Modelling Black-Box
Audio Effects with Time-Varying Feature Modulation,” in
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2023.

[8] A. Peussa et al., “Exposure Bias and State Matching in Re-
current Neural Network Virtual Analog Models,” in Proc. of
the Int. Conf. on Digital Audio Effects (DAFx), 2021.

[9] J. Elman, “Finding structure in time,” Cognitive science, vol.
14, no. 2, pp. 179–211, 1990.

[10] E. Perez et al., “FiLM: Visual reasoning with a general con-
ditioning layer,” in Proceedings of the AAAI Conference on
Artificial Intelligence, 2018.

[11] Y. Chen et al., “Dynamic convolution: Attention over convo-
lution kernels,” in Proc. of the IEEE/CVF Conf. on Computer
Vision and Pattern Recognition, 2020, pp. 11030–11039.

[12] C. Steinmetz and J. Reiss, “Auraloss: Audio focused loss
functions in PyTorch,” in Digital Music Research Network
One-day Workshop, 2020.

[13] M. Defferrard, K. Benzi, et al., “FMA: A dataset for mu-
sic analysis,” in International Society for Music Information
Retrieval Conference (ISMIR), 2017.

[14] X. Bouthillier, P. Delaunay, et al., “Accounting for variance
in machine learning benchmarks,” Proceedings of Machine
Learning and Systems, vol. 3, 2021.

[15] A. Caillon et al., “Streamable Neural Audio Synthesis With
Non-Causal Convolutions,” in Proc. International Confer-
ence on Digital Audio Effects (DAFx), 2022.

[16] P. J. Werbos, “Backpropagation through time: what it does
and how to do it,” Proceedings of the IEEE, vol. 78, no. 10,
pp. 1550–1560, 1990.

[17] A. Wright et al., “Real-time black-box modelling with re-
current neural networks,” in Proceedings of International
Conference on Digital Audio Effects (DAFx), 2019.

[18] A. Wright and V. Valimaki, “Grey-box modelling of dynamic
range compression,” in Proceedings of International Confer-
ence on Digital Audio Effects (DAFx), 2022.

[19] O. Mikkonen et al., “Sampling the user controls in neural
modeling of audio devices,” EURASIP Journal on Audio,
Speech, Music Processing, vol. 2024, no. 1, pp. 26, 2024.

[20] S. McCandlish, J. Kaplan, D. Amodei, and O. D. Team,
“An empirical model of large-batch training,” arXiv preprint
arXiv:1812.06162, 2018.

[21] B. Series, “Method for the subjective assessment of interme-
diate quality level of audio systems,” Int. Telecommunication
Union Radiocommunication Assembly, vol. 2, 2014.

[22] M. Schoeffler et al., “webmushra—a comprehensive frame-
work for web-based listening tests,” Journal of Open Re-
search Software, vol. 6, no. 1, 2018.

DAFx.8

	1 Introduction
	2 Methods
	2.1 Model Architecture
	2.2 Loss
	2.3 Dataset
	2.3.1 Source Audio
	2.3.2 Parameter Sampling
	2.3.3 Cross-Validation

	2.4 Training
	2.4.1 Temporal Operations and Cached Padding
	2.4.2 Windowed Target and Streamed Target
	2.4.3 Truncated Backpropagation Through Time
	2.4.4 Training Procedure
	2.4.5 Hyperparameters

	3 Experiments and Results
	3.1 Adjusting Truncated Backpropagation Through Time
	3.2 Objective Evaluation
	3.3 Subjective Evaluation

	4 Conclusion
	5 Acknowledgments
	6 References

