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ABSTRACT

Neural networks have been applied within the Wave Digital Filter
(WDF) framework as data-driven models for nonlinear multi-port
circuit elements. Conventionally, these models are trained on wave
variables obtained by sampling the current-voltage characteristic
of the considered nonlinear element before being incorporated into
the circuit WDF implementation. However, isolating multi-port
elements for this process can be challenging, as their nonlinear
behavior often depends on dynamic effects that emerge from inter-
actions with the surrounding circuit. In this paper, we propose a
novel approach for training neural models of nonlinear multi-port
elements directly within a circuit’s Wave Digital (WD) discrete-
time implementation, relying solely on circuit input-output voltage
measurements. Exploiting the differentiability of WD simulations,
we embed the neural network into the simulation process and opti-
mize its parameters using gradient-based methods by minimizing
a loss function defined over the circuit output voltage. Experimen-
tal results demonstrate the effectiveness of the proposed approach
in accurately capturing the nonlinear circuit behavior, while pre-
serving the interpretability and modularity of WDFs.

1. INTRODUCTION

Data-driven methods have significantly impacted various fields of
digital signal processing, driving a gradual convergence between
model-based techniques and machine learning approaches [1]]. In
audio signal processing, Digital Audio Effects (DAFx) have fol-
lowed a similar trend, particularly in the domain of Virtual Analog
(VA) effects, which aim to recreate the behavior of analog audio
gear in the digital domain [2]. A fundamental challenge in design-
ing VA effects is the development of efficient techniques that en-
able real-time emulation of analog audio circuits while preserving
the distinctive timbral characteristics introduced by the nonlinear
behavior of their constitutive analog components.

Traditionally, VA methods can be categorized into two main
approaches: closed-box and glass-box, which correspond to the
earlier terms black-box and white-box, respectively. Closed-box
methods focus on learning the input-output behavior of a circuit
using parametric models without explicitly considering its internal
structure. Examples of such methods are nonlinear system identifi-
cation approaches based on Volterra series [3] and, more generally,
neural networks [4]. On the other hand, glass-box methods entail
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solving in the discrete-time domain the algebraic or the Ordinary
Differential Equations (ODEs) characterizing the schematic, typi-
cally using state-space methods [S]], port-Hamiltonian methods [6]],
or Wave Digital Filters (WDFs) [7]]. A key characteristic of glass-
box models is their reliance on full knowledge of the circuit under
study, a requirement that can be mitigated when experimental sam-
pling of the considered circuit is available.

While a portion of the research in VA modeling has focused
on employing ever-evolving deep learning architectures to pro-
duce closed-box models of analog audio systems, such as vacuum-
tube amplifiers [8]], compressor circuits [9} [10], and modulation
effects [[11], other research lines have explored hybrid approaches
combining glass-box methods with ideas from the machine learn-
ing domain. Closed-box models based on deep neural networks
can be flexible in learning highly complex behaviors directly from
data, but they often require large amounts of training data and may
struggle with generalization beyond the training set. In contrast,
glass-box models inherently incorporate domain knowledge by en-
forcing physical constraints, such as circuit topology and govern-
ing equations. These inductive biases [12] not only improve data
efficiency, but also enhance model interpretability, and generaliza-
tion to unseen conditions. In particular, inspired by prior work on
Differentiable Digital Signal Processing (DDSP) [[13]], several re-
search efforts have been devoted to defining differentiable glass-
box DSP structures that can be optimized using gradient-based
methods to fit physical input-output measurements from a real de-
vice [14,115].

Among glass-box approaches, Wave Digital Filters (WDFs)
have emerged as a promising framework for realizing differen-
tiable DSP structures [16}17]. Initially developed by A. Fettweis
in the 1970s for the digital implementation of passive reference
analog filters [18]], WDFs rely on a port-wise transformation of
port voltages and port currents (the so-called Kirchhoff variables)
into incident and reflected waves (i.e., wave variables) with the in-
troduction of a free parameter per port called port resistance. This
domain change allows modeling connection networks and circuit
elements separately, as input-output scattering blocks, achieving
advantages like high modularity and potentially explicit realiza-
tions when stable discretization methods are employed [18] [19].
When interconnecting these blocks, the introduced free parameters
are set through the so-called adaptation process in order to elim-
inate implicit relations, avoiding thus Delay-Free Loops (DFLs).
Circuits with up to one nonlinear one-port element, described by
an explicit mapping, can be realized in the Wave Digital (WD)
domain in a fully explicit fashion, i.e., without the need of any
iterative solver [18l 20]. Recently, thanks to the use of a vector
definition of wave variables [21]], the class of circuits that can be
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emulated with WDFs in a fully explicit fashion has been extended
to accommodate even those circuits featuring one nonlinear multi-
port element, provided that an explicit formulation of the nonlinear
‘WD mapping can be obtained [22]].

The WD discrete-time simulation within an Automatic Differ-
entiation (AD)-based framework has been used to perform Lumped
Element Model (LEM) parameter values estimation via gradient-
based methods [23]], enabling the optimization of equivalent circuit
models to match experimental observations. Recent advancements
have integrated neural network-based blocks [22} 24| 125 126, 27]]
among traditional WD blocks in order to implement the explicit
scattering relation of one-port or multi-port nonlinear elements.
Such neural models are pre-trained over wave variables obtained
by first sampling the Kirchhoff domain characteristic of the non-
linear element and then integrated into the circuit WDF realiza-
tion. However, determining exact nonlinear component charac-
teristic curves requires them to be measured in isolation from the
circuit, which is not only impractical but can also compromise the
integrity of the circuit [28]. Additionally, other nonlinear effects
might arise from the interaction of the nonlinear element with the
rest of the circuit, which would not be captured by the measure-
ment in isolated conditions.

In this manuscript, we introduce a novel approach for training
neural models of nonlinear multi-port elements directly within a
circuit’s WD discrete-time implementation, relying solely on cir-
cuit input-output voltage measurements. Exploiting the differen-
tiability of WD simulations, we embed a randomly-initialized neu-
ral network into the simulation process and optimize its parame-
ters using gradient-based methods by minimizing a loss function
defined over the circuit output voltage. The modular structure
of WDFs allows us to encapsulate the circuit nonlinear behavior
within the scattering relation of the multi-port element, which we
implement explicitly using a neural model. This approach pre-
serves the interpretability and structure of the WDF framework
while enabling accurate modeling of complex nonlinear behaviors
directly from experimental measurements.

The remainder of the manuscript is organized as follows. Sec-
tion [2] provides a background concerning WDFs and their exten-
sion to a vector definition. Section[3|then addresses the problem of
training a neural model within the discrete-time WD simulation.
A case study for the application of the developed methodology is
presented in Section[d] along with numerical results. Finally, Sec-
tion [5]concludes this manuscript.

2. VECTOR WAVE DIGITAL FILTERS

In this section, we provide the necessary background on Vector
Wave Digital Filters (VWDFs), which are WD structures that com-
bine both scalar and vector definitions of wave variables.

2.1. Scalar Waves

The design of WDFs relies on a port-wise description of a refer-
ence analog circuit. Each pair of Kirchhoff port variables v;, and
i, is transformed into a corresponding pair of voltage wave vari-
ables, defined as [18]]

aj = v + Zjiy, by =v; — Zjij, 1
where v; and ¢; represent the j-th port voltage and port current,
while a; and b; correspond to the j-th port incident and reflected

waves, respectively. Z; # 0 is a real-valued free parameter, re-
ferred to as reference one-port resistance, which plays a crucial
role in solving WD structures [18]. For linear one-port elements,
an appropriate choice of Z; can eliminate the instantaneous de-
pendence of b; on a;. Specifically, the scattering equation for a
general linear one-port element, including dynamic components,
in the WD domain is given by [[19]

2Z; k]

_ Ry i[k] = Z;[K]
B Ry ;K] + Z;[k]

L e AT

a;[k] + Veilk]l. ()

This formulation is obtained by applying (T) to the Thévenin equiv-
alent model of a one-port circuit element in the discrete-time do-
main

v [k] = Rq j[k]i; [k] + Ve s[k], 3)

where k represents the sample index, while R, ;[k] and Vg ;[k]
denote the resistive and voltage parameters, respectively. Setting
Zi|k] = R,,;|k], the instantaneous dependence between b;[k] and
a;[k] is eliminated [19]. Under this condition, the scattering equa-
tion (@) simplifies to b;[k] = Vg ;[k], and the linear one-port ele-
ment is said to be adapted according to WDF theory [18].

2.2. Vector Waves

Using the scalar definition of wave variables in (I)) to model multi-
port elements in the WD domain often leads to unavoidable DFLs
which cannot be eliminated through any choice of the free param-
eters (21, 22]. A possible strategy to address this limitation is to
encompass the N ports of a given IN-port circuit element into vec-
tor wave variables, defined as [21]]

a=v+2Zi.nyi, b=v—7Zni, )
where v = [v1,...,un]" and i = [i1,...,in]" are the vec-
tors of the N-port voltages and currents, respectively. Similarly,
a=lai,..., aN}T andb = [by,. .., bN]T are the vector of waves
incident to and reflected from the N-port element, respectively,

whereas
le - ZlN

Zin=|: .. |, 3)
N1 ... ZNN

is a full-rank N X N matrix of real-valued free parameters Z,,,
with ¢,7 € {1,..., N}, referred to as reference multi-port resis-
tance.

Similar to the scalar case, an IN-port linear element can be
adapted by appropriately selecting the Z1. entries to remove the
instantaneous dependence between the vectors of reflected waves
and incident waves in the scattering relation [21].

2.3. Connection Networks

Topological connection networks are represented as J-port WD
blocks characterized by the vector by = [b1, . .., bJ]T, which con-
tains the waves incident to the junction and reflected by the ele-
ments, and the vector a; = [au, ..., aJ]T, which includes waves
reflected by the junction and incident to the elements. The scat-
tering relation between by and aj for a J-port junction is given
by

a) = Sbj ) (6)
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where S is a J X J scattering matrix which can be computed for re-
ciprocal lossless connection networks using either of the following
equivalent expressions [29]

S=2Q7(QZ,'Q") 'Qz,; "' -1, %)

S =1-27Z,B"(BZ,B")"'B, ®)

where I is the J x J identity matrix, while Q and B are the funda-
mental cut-set and loop matrices, respectively. In VWDFs, which
incorporate both [N-port elements described by vector waves and
one-port elements described by scalar waves, the matrix Zj is
a full-rank block diagonal matrix, which features both reference
multi-port and one-port resistances on the main diagonal [21].

2.4. VWDFs with a Single N-port Nonlinear Element

In the previous subsections, we discussed how reference one-port
and multi-port resistances can be set to adapt circuit elements, en-
suring that the WD structure remains computable. This is, in gen-
eral, only applicable to linear elements [18} [21]. However, for
circuits containing a single nonlinear one-port or /N-port element,
it has been shown that it is possible to exploit free parameters in
order to remove DFLs by adapting the port (or ports) of the junc-
tion to which the nonlinear element is connected [[19} 22]]. Such
circuits can be therefore modeled using WDFs with a connection
tree structure composed of:

¢ Root, i.e., the nonlinear element;

* Nodes, i.e., the topological junctions, which have one
adapted (scalar or vectorial) port and multiple non-adapted
(scalar or vectorial) ports;

e Leaves, i.e., the linear elements, which have just one
adapted (scalar or vectorial) port.

Such tree-like WD structures are fully-explicit, as long as the one-
port or N-port nonlinear block is characterized by an explicit map-
ping. Adapted ports ensure that no implicit relations form at the
interconnections among WD blocks. The only sufficient condition
for applying such modeling approach is that there exists a refer-
ence multi-port resistance that adapts the ports of the junction to
which the N-port nonlinear block is connected [26].

Assume, without loss of generality, that the entire connection
network of a reference circuit, featuring a single N-port nonlin-
ear element, can be modeled using a single J-port junction (single
node). This junction is characterized, at each sampling index k,
by the vectors of wave variables by[k] = [bi[k],...,bs[k]]" and
aj[k] = [a1[k],...,as[k]]". The N-port nonlinear element, de-
scribed by means of vector waves, is connected to ports with in-
dexes from 1 to N, while the linear elements (leaves) are assumed
to be connected to the remaining J — N ports. The discrete-time
simulation of the corresponding VWDF structure comprises the
following stages at each sampling index k:

* Leaves Scattering Stage: the waves reflected by the leaves,
corresponding to the last J — N entries of by[k], are com-
puted using their adapted scattering relation, which in the
case of one-port elements can be written as

bilk] = Veslk] je{N+1,...,J}. )

* Forward Scattering Stage: the vector of waves incident to
the N-port root is computed as

alk] = S1,~bylk], (10)

where S, is the sub-matrix formed by the first N rows of
the scattering matrix S.

Root Scattering Stage: the vector of waves reflected by the
root is computed according to the vector scattering relation
f characterizing the nonlinear element

b[k] = f(a[k]) , (an

where b[k] constitutes the first NV entries of by[k].

« Backward Scattering Stage: the vector of waves reflected
by the node (incident to the leaves) is computed as

ay[k] = Sby[k]. (12)

At each sampling index k, the values of the Kirchhoff variables
at each scalar or vectorial port can be obtained by applying the
inverse linear transformation of (I) and @), respectively.

2.5. Explicit WD N-port Nonlinear Element Modeling

The VWDF discrete-time simulation of reference circuits contain-
ing a single N-port nonlinear element is fully explicit, provided
that the Root Scattering Stage, expressed in (TI)), can also be
solved explicitly. In [22}26], it is demonstrated that a parametric
nonlinear model, specifically a neural network, can be employed
to regress the explicit nonlinear WD mapping for an N-port non-
linear element. The general form of this explicit WD mapping is
given by

bk] = fo(alk]) , (13)

where fy is the neural approximation of function f, whose param-
eters @ are obtained training the model to estimate the vector of re-
flected waves b given the corresponding vector of incident waves
a as input. These pairs of vectors of wave variables are derived
from Kirchhoff domain samples of voltages [v1, ..., vn] and cur-
rents [i1,...,4n] of the nonlinear element characteristic. Each
entry is then transformed using the vector definition of wave vari-
ables in @), where Z .y is chosen to ensure adaptation at the ports
to which the N-port WD block is connected.

3. TRAINING NONLINEAR ELEMENT MODELS
THROUGH VWDF SIMULATION

By using ([3) in place of (TI), the computational flow for the
VWDF discrete-time simulation of a reference circuit with a single
N-port nonlinear element can be defined at each sampling index k
by the input-output relation

gkl = p(x[k]; 0), (14)

where z[k] is the k-th sample of the input voltage, and §[k] is the
estimate of output voltage y[k]. The circuit output is determined
by the set of parameters 8, which, in this case, are associated with
the representation fg of the N-port nonlinear element. By im-
plementing ¢ in Python using the PyTorch Autograd engine [30],
each operation involved in the discrete-time simulation process is
organized within a Directed Acyclic Graph (DAG). This structure
enables the efficient computation of gradients of any loss function
with respect to the model parameters using reverse-mode AD [23].
We define the training objective as finding 8 such that

0" = arg min L(y,y), (15)
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Figure 1: Big Muff Pi input stage.

where y = [y[k],...,y[k — K + 1]]" represents segments of
the ground-truth circuit voltage output windowed using a rectan-
gular window of size K, and y = [§[k],...,9[k — K + 1]]7
contains the model predictions for a given input sequence x =
[x[k],...,z[k — K + 1]]". Each input sequence x is pre-padded
with zeros to ensure the correct initialization of dynamic elements
and allow the circuit to reach a steady-state condition. During the
processing of these zero-padding steps, which we define as warm
up, the PyTorch Autograd engine is disabled to prevent unnec-
essary gradient computations, and the corresponding outputs are
subsequently discarded.

The loss function in (T3) is defined as the weighted sum of
three terms: the time-domain Normalized Mean Squared Error
(NMSE) (T7), spectral convergence (T8), and the L'-norm of the
regularized log-magnitude error (T9). Specifically, it is formulated
as [9,131]]

£:£Id+>\(£5c+£log) B (16)
where
~ 112
| = ||y }2’”2 , (17)
yll2
STFT — |STFT(y
[ ISTFT(y)| |
1 ISTFT(y)| + €
og — —— I P —— e E— . 1
o G e | R

Here, |[STFT( - )| € RF*7 represents the magnitude of the Short-
Time Fourier Transform (STFT), || - ||1 denotes the L"-norm, || - ||2
the L?-norm, and || - || » the Frobenius norm. The term e is a small
constant added to prevent numerical errors, and A = 1072 is the
spectral weighting factor.

Solving the optimization problem in (T3] through the VWDF
discrete-time simulation allows to characterize the nonlinear be-
havior of the N-port nonlinear element directly from input-output
circuit voltage measurements. It is worth noting that implement-
ing (T3) does not necessarily require the use of neural networks, as
any differentiable parametric nonlinear model can be used to ad-
dress this task. Finally, depending on the specific nonlinear device
being modeled within the circuit, either static or dynamic models
can be employed to characterize its peculiar nonlinear behavior.

@Ql
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H
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Figure 2: VWDF implementation of the circuit shown in Figure

4. CASE STUDY

As an example of application, let us consider the input stage of the
Big Muff Pi circuif’|depicted in Figure|l] This circuit includes a
single npn 2N5089 Bipolar Junction Transistor (BJT). Following
the approach in [22], the transistor can be represented using its
two-port element model. The corresponding VWDF connection-
tree structure, illustrated in Figurem consists of a single WD 12-
port junction (node) to which all one-port linear elements are con-
nected as leaves. The BIJT, acting as the root of the structure, is
connected to the junction with N = 2 vectorial ports. The in-
put voltage signal is represented by the voltage source Vi,, while
the output voltage Vo, is measured across the terminals of resistor
Rout. The circuit parameter values are summarized in Table[T]

4.1. Dataset and Training

The reference circuit is implemented as a Mathworks Simscape
model, with the BIJT represented using the extended Ebers-Moll
model (EMM) [22]. The parameters for the 2N5089 BJT used in
this circuit are listed in Table 2]

To construct a synthetic dataset, we start from a 30-second
clean guitar audio excerpt. The input voltage signal Viy[k] is built
by applying a multiplicative factor A € {0.5,1.0,1.5,2.0} to the
original signal. We add also five 2-second exponential sweeps
from 20 Hz to 8 kHz, with amplitudes from 0.1 V to 0.5 V.
The total duration of the input voltage signal amounts to 130 s.
We obtain the corresponding Vou[k] using the Simscape model,
ensuring that it is simulated starting from a steady-state condi-
tion. All signals are sampled at f; = 44.1 kHz. Input sequences
x = [Valk],...,Vi[lk — K + 1])]" are obtained by shifting a
rectangular window of length K = 8192 and hop size 512, and
they are assigned with the corresponding ground truth sequences
v = [Voulk], ..., Voulk — K + 1]]T. Such sequences are assem-
bled in batches of 64 elements. From the entire dataset, 90% of
the entries are used for training, while the remaining 10% is held
out for validation purposes.

The nonlinear root scattering f in the VWDF is implemented
using a Multi-Layer Perceptron (MLP) with two hidden layers
of 32 units each (1218 parameters) and Exponential Linear Unit

IThe schematic is taken from: https://www.electrosmash.
com/big-muff-pi-analysis
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Table 1: Parameter values for the Big Muff Pi input stage circuit shown in Figure

Ry Ro R Ry Row Ch C> Cs Ve
39kQ  47kQ  470kQ 10kQ 100Q 1kQ 1pF  470pF 1pF 9V
Table 2: 2N5089 BJT: extended EMM parameter values.
— pemup Param. Value | Param.  Value
2 —— Valid
Vin 25.85 mV I 5.9 fA
! o 0.9993 I 10.6 fA
=0 ————— o 0.5579 Rq 107°Q
= Nt 1 R 1075 Q
=1 11
85 n 1 Ry 10 Q
-2 Rp2 10% ©

0 2500 5000 7500 10000 12500 15000 17500 20000
SampleIndex k

Figure 3: Example of VWDF discrete-time simulation associated
to an output sequence y. The first 11,025 samples (in blue), ob-
tained with a zero input, are disregarded to prevent the initial tran-
sient affecting the learning process. The next 1024 samples (in or-
ange), corresponding to the onset of the input signal, are also dis-
carded to account for the relative transient. The remaining 7168
samples (in green) are considered valid and are used in the com-
putation of the loss function defined in (16).

(ELU) activation functions. We train the VWDF connection-tree
modified to handle batch processing for 15 epochs using the Adam
optimizer [32]] with 81 = 0.9, B2 = 0.999, and a learning rate of
1072 to minimize the loss function in (16). Each input sequence
is preceded by a warm up phase consisting of 11,025 zero samples
(0.25 s). To ensure the loss is not influenced by the initial transient
behavior of the VWDF following the warm up phase, we compute
it using only the last 7168 samples (0.16 s) of the predicted and
ground truth output sequences. Figure [3]shows an illustrative ex-
ample of a predicted output sequence: the initial segment (in blue)
corresponds to the warm up phase, and it is disregarded along with
the subsequent early portion of the sequence (in orange). Only the
final segment (in green) is retained for computing the loss function.

4.2. Numerical Results and Discussion

In this section, we present the numerical results obtained simu-
lating the trained VWDF model. The training procedure is de-
signed to characterize the nonlinear behavior of its root element,
i.e., the BJT, which is modeled through an MLP. We refer to the
proposed training approach as VWDF-MLP. Specifically, we eval-
uate its discrete-time simulation performance using held-out guitar
audio waveforms as input voltage. To provide a comparative anal-
ysis, we consider two baseline approaches:

1. VWDF with externally-trained MLP (MLP-2023) — The
same VWDF implementation based on an MLP (two lay-
ers with 32 units and ELU activation functions), but trained
following the method in [22]. This approach assumes full

Table 3: Mean Absolute Error (MAE) values for the three com-
pared models.

VWDF-MLP
1.45 x 1073

MLP-2023 GRU
1.11 x 1072 1.71 x 1073

MAE [V]

knowledge of the Kirchhoff domain nonlinear characteristic
of the element and employs it in a dedicated training phase
to characterize the WD mapping of the N-port nonlinear
element.

2. Fully closed-box model (GRU) — A Gated Recurrent Unit
(GRU) model [8] with 16 hidden units (881 parameters),
trained end-to-end using the same data as VWDEF-MLP but
without warm up. This approach directly models the circuit
input-output behavior, without requiring any prior knowl-
edge of the underlying schematic.

As an evaluation metric, we use the Mean Absolute Error (MAE)

. 1 X
MAE(y,y) = % ly =¥l , (20)

where y is a vector containing the samples of the ground-truth out-
put voltage Vou[k], ¥ denotes the model predictions, and K is the
length (in samples) of the considered sequences. For each model,
we compute the MAE over the entire validation set. The results
are summarized in Table [3] Overall, the three methods achieve
comparable levels of accuracy. Among them, the MLP-2023 base-
line yields the lowest MAE, which can be attributed to the fact that
the externally-trained MLP is exactly tuned on the static nonlinear
characteristic of the BJT. In contrast, both VWDF-MLP and GRU
approaches rely exclusively on circuit input-output measurements.
In particular, VWDF-MLP is tasked with learning the behavior of
the nonlinear element from the overall circuit dynamic behavior,
which poses a more complex identification problem.

To further assess model performance, Figure [4] provides a
time-domain comparison for each approach on a representative
segment of the validation waveform. In each case, the predicted
output is plotted against the ground truth, while the corresponding
MAE curve is shown in the lower accompanying plot. These plots
highlight how closely each model is able to follow the real circuit
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Figure 4: Voltage measured across resistor R for the three considered models: (a) VWDF-MLP model predictions (blue) vs. the ground
truth (orange). (b) MLP-2023 model predictions (blue) vs. the ground truth (orange). (c¢) GRU model predictions (blue) vs. the ground
truth (orange). The Mean Absolute Error (MAE) curve for each model is displayed in the corresponding bottom subplot (red).

response in a general application scenario. Notably, VWDF-MLP
tends to exhibit larger prediction errors in regions of the input sig-
nal where sharp positive transients or amplitude spikes occur—
portions of the signal that are more likely to be clipped by the
circuit’s nonlinear behavior. This can be attributed to the lim-
ited presence of such high-energy events in the training dataset.
Indeed, the dataset was not designed to uniformly span the full
nonlinear behavior of the BJT, as in the case of the MLP-2023
baseline. Nonetheless, VWDF-MLP maintains strong generaliza-
tion capabilities and achieves performance comparable to the other
methods. Like MLP-2023, it retains the key advantage of being
physically interpretable within the WDF framework. At the same
time, it further extends this benefit to scenarios where the nonlinear
element cannot be characterized in isolation and only input-output
measurements from the complete circuit are available.

5. CONCLUSIONS

In this paper, we have introduced an approach for training neu-
ral models of nonlinear multi-port elements within a circuit’s WD
discrete-time implementation. This is accomplished integrating a
differentiable parametric description of the N-port nonlinear ele-
ment, namely a neural network, into the VWDF connection-tree
structure. Since the discrete-time simulation of such structure is
differentiable, the neural network parameters can be optimized
through gradient-based methods to minimize a loss function de-
fined on the circuit’s output voltage. A key advantage of this ap-
proach is that it eliminates the need for prior knowledge about the
nonlinear characteristics of the element being modeled, making
it applicable to scenarios where directly characterizing a nonlin-
ear multi-port in isolation from the rest of the circuit might not
be feasible. This is achieved while maintaining the interpretabil-
ity and modular structure inherent in the WDF framework. Our

results showcase the effectiveness of the proposed methodology
in capturing the nonlinear behavior of a reference circuit for VA
applications featuring a single nonlinear BJT. The performance is
comparable to that of the two considered baselines, namely the
discrete-time VWDF simulation based on a pre-trained model of
the BJT and a fully closed-box GRU implementation.

Future work might investigate the integration of Lipschitz-
bounded neural architectures into VWDF structures modeling cir-
cuits containing one or more nonlinear multi-port elements. Such
architectures provide a promising strategy for enforcing formal
passivity and stability guarantees in the resulting discrete-time sys-
tem, while also potentially supporting convergence guarantees for
iterative methods in the WD domain [33]]. The approach could also
be extended to model circuit elements with dynamic nonlinearities
by incorporating parametric nonlinear models with memory into
the VWDF framework. Lastly, the developed methodology could
be applied to the modeling of nonlinear acoustic systems, such as
electroacoustic transducers, whose behavior is typically character-
ized solely through input-output signal pairs, without the possibil-
ity of isolating individual nonlinear contributions.
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