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ABSTRACT

This article presents ZePolA, a digital audio equalizer designed
as an educational resource for understanding digital filter design.
Unlike conventional equalization plug-ins, which define the fre-
quency response first and then derive the filter coefficients, this
software adopts an inverse approach: users directly manipulate the
placement of poles and zeros on the complex plane, with the corre-
sponding frequency response visualized in real time. This method-
ology provides an intuitive link between theoretical filter concepts
and their practical application. The plug-in features three main
panels: a filter parameter panel, a frequency response panel, and a
filter design panel. It allows users to configure a cascade of first-
or second-order filter elements, each parameterized by the loca-
tion of its poles or zeros. The GUI supports interaction through
drag-and-drop gestures, enabling immediate visual and auditory
feedback. This hands-on approach is intended to enhance learning
by bridging the gap between theoretical knowledge and practical
application. To assess the educational value and usability of the
plug-in, a preliminary evaluation was conducted with focus groups
of students and lecturers. Future developments will include sup-
port for additional filter types and increased architectural flexibil-
ity. Moreover, a systematic validation study involving students
and educators is proposed to quantitatively evaluate the plug-in’s
impact on learning outcomes. This work contributes to the field
of digital signal processing education by offering an innovative
tool that merges the hands-on approach of music production with
a deeper theoretical understanding of digital filters, fostering an
interactive and engaging educational experience.

1. INTRODUCTION

Digital Signal Processing (DSP) is a fundamental discipline not
only in many subfields of Sound and Music Computing, but also
more broadly in Computer Science and Communication Engineer-
ing, as demonstrated by the presence of dedicated panels in ERC
calls [1]. In particular, the Z-transform and its relationship to Lin-
ear Time-Invariant (LTI) filters is one of the most important topics
in DSP courses.

As with most mathematical subjects, a formal treatment is es-
sential for teaching students the concepts behind LTI filters. How-
ever, intuition and visualization often prove to be powerful allies,
both for approaching the topic initially and for gaining a deeper
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understanding. To this end, DSP lecturers often use the “rubber
sheet” metaphor: placing a zero on the complex (Gaussian) plane
is like pinning down the rubber sheet, while placing a pole is like
lifting a point of the sheet toward infinity. The entire sheet deforms
according to these principles, and the height of the sheet along the
unit circle determines the magnitude of the frequency response.

Although this is a powerful metaphor, it has some limitations.
First, it conveys nothing about the phase of the frequency response.
Moreover, it is not quantitative, as it does not indicate how much
the rubber sheet is stretched. Additionally, the representation of
classical electronic filters is seldom addressed. Finally, many stu-
dents struggle to imagine how filters actually sound based solely
on their poles and zeros.

A simple visualization of a filter’s poles and zeros can be eas-
ily implemented, for example, by writing a Python or MATLAB
script, or even by creating a Max/MSP patch (an activity that could
be pedagogically valuable in itself). However, allowing for di-
rect graphical manipulation of poles and zeros on the Gaussian
plane introduces implementation complexity that often exceeds the
scope of introductory DSP courses.

Nonetheless, we believe that this mode of interaction, com-
bined with multisensory (visual and auditory) feedback, can be
extremely beneficial in helping students achieve the kind of intu-
itive understanding we aim for in our teaching.

For this reason, we propose an open-source, cross-platform,
ready-to-use stand-alone application and audio plug-in that en-
ables students and lecturers to manipulate the position of poles
and zeros on the complex plane, with real-time visualization and
audio processing of input signals. This tool is intended to foster a
better understanding of the underlying DSP concepts and to pro-
vide an intuitive foundation that supports more natural reasoning
on the complex plane, following the learning-by-doing and explo-
rative learning paradigms [2, 3]. Previous studies have shown that
- given that students already have enough knowledge to understand
what is happening [4] - such tools, when properly designed [5], can
be very effective in improving learning activities. [6]. Although
this software could, in principle, be used for music production or
as a filter designer, this are not intended purposes.

In Sec. 2, we provide an overview of related tools. In Sec. 3,
we describe the implementation of the application. In Sec. 4, we
report a preliminary evaluation of the proposed tool. Sec. 5 con-
cludes the document.

2. STATE OF THE ART

Many similar projects have been proposed in the literature. For
example, the ZtransformApplet [7] is a tool that allows users to
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edit filter coefficients and listen to the results by filtering a white
noise signal, while displaying the difference equation, the transfer
function, the pole-zero plot, and an adaptive block diagram. Un-
fortunately, this solution is limited by its low filter order and the
fact that poles and zeros cannot be manipulated directly.

Tobias Fleischer’s Filter Explorer [8] offers similar features: a
standalone application and VST2 plug-in that allows users to en-
ter parametric formulas for each coefficient and provides real-time
visualization of the pole-zero plot, magnitude and phase response,
and audio filtering. Although it is a valuable tool for designing
filters and thus a commendable educational resource in that sense,
like ZtransformApplet, it does not support direct interaction with
the Z-plane. Moreover, it is an unmaintained project destined for
obsolescence, as the VST2 standard is being phased out in favor of
version 3.x, and Tobias Fleischer is no longer actively developing
the tool.

Other similar tools are available online as web applications,
such as Nigel Redmon’s Filter Frequency Response Grapher [9].
However, these typically focus on filter design and do not support
custom audio processing or direct manipulation of poles and zeros
on the Z-plane.

It is also worth mentioning MATLAB’s FVTool (recently re-
placed by Filter Analyzer [10]), which provides a comprehensive
overview of a filter’s behavior given its coefficients. Nevertheless,
it does not offer direct manipulation of poles and zeros and cannot
process audio signals out of the box.

With respect to direct manipulation of poles and zeros, one of
the earliest VST plug-ins was Rob Conde’s Zero Pole Explorer [11].
However, aside from being discontinued and limited to the VST2
format, it supports only second-order filters. A more modern Python
application that addresses the filter order limitation is Saied Salem’s
digital-filter-designer [12], although it lacks real-time audio pro-
cessing and is primarily focused on filter design.

Finally, there are online versions of similar concepts, such as
Nigel Redmon’s Pole-Zero Placement [13]. These tools typically
support only a limited number of poles and zeros and do not pro-
vide real-time audio processing capabilities.

3. METHOD

We implemented the software using the JUCE C++ framework [14],
although the DSP and filter design components are largely inde-
pendent from it. For elliptic integrals, we used the Cephes Math
Library [15].

3.1. DSP

We implemented the overall filter as a cascade of second-order
filter elements, either 2-zeros or 2-poles. We chose second-order
elements to ensure the filter output is always a real-valued signal.
This is achieved by constraining the two zeros (or poles) to be
complex conjugates of each other. The frequency response of a
2-zeros filter, with zeros at χ and χ, is

H(z)
χ (z) = (1− χz−1) (1− χz−1) = (1)

=1− 2ℜ{χ} z−1 + |χ|2 z−2 (2)

and the frequency response of a 2-poles filter, with poles at χ and
χ, is the reciprocal

H(p)
χ (z) =

1

H
(z)
χ (z)

=
1

1− 2ℜ{χ} z−1 + |χ|2 z−2
(3)

We can see that the two coefficients are real-valued and identical,
regardless of whether the element is a 2-zeros or 2-poles filter.

c1 = −2ℜ{χ} ∈ R (4)

c2 = |χ|2 ∈ R+ (5)

The difference equation for a filter element is

y[n] = x[n] + c1 x[n− 1] + c2 x[n− 2] (6)

for 2-zeros elements, and

y[n] = x[n]− c1 y[n− 1]− c2 y[n− 2] (7)

for 2-poles elements. Each filter element therefore requires two
memory cells for the coefficients and two for the previous signal
values.

Filter elements can optionally be configured as 1-pole or 1-
zero filters. In that case, to ensure the output remains real-valued,
the zero or pole is forced to lie on the real axis. The frequency
response becomes

H(1z)
χ (z) = 1− χz−1 (8)

H(1p)
χ (z) =

1

H
(1z)
χ (z)

=
1

1− χz−1
(9)

with corresponding coefficients

c1 = −χ ∈ R ⇔ χ ∈ R (10)
c2 = 0 (11)

Filter elements are connected in series in a filter cascade, with
the output of one element feeding into the next. Each element can
also be deactivated. To prevent numerical instability, each element
has an individual input gain parameter.

Let N be the number of active elements in the cascade. The
difference equation for the i-th active filter element is

yi[n] = xi[n] + ci,1 xi[n− 1] + ci,2 xi[n− 2] (12)

for 2-zeros elements, and

yi[n] = xi[n]− ci,1 yi[n− 1]− ci,2 yi[n− 2] (13)

for 2-poles elements, where y0 is the input signal, yN is the output
signal, and xi = ki yi−1. The overall frequency response is the
product of all individual frequency responses and their respective
gain parameters ki.

3.2. GUI

The GUI (Fig. 1) is organized into five panels:

• The parameter panel allows interaction with the filter ele-
ment parameters.

• The plots panel visualizes the frequency response of the fil-
ter cascade (Discrete-Time Fourier Transform).

• The filter design panel is used to configure filter elements
to design Butterworth, Chebyshev, and Elliptical filters.

• The master panel includes a master output gain slider and a
bypass toggle button.

• The top menu offers various utility functions.
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Figure 1: The plugin GUI in its default state. All elements are off, the frequency response is constant and nothing is showing in the Gaussian
plane. The left panel is the parameter panel, with all individual parameters, the Gaussian plane, and the shortcuts. The middle panel is the
plot panel, with the DTFT visualization. The right panels are the filter design panel (top), and the master panel (bottom).

3.2.1. Parameters

The parameter panel is the main focus of the GUI. In this panel,
users can view and modify all parameters of all filter elements. At
the top of the panel, there is a matrix of GUI components for pa-
rameter interaction. Each row corresponds to a filter element, and
each column represents a parameter. Hovering over the column
labels with the mouse reveals tooltips with additional information.
Although the code supports any number of filter elements, we lim-
ited the maximum to 10 to balance flexibility and usability.

The radius slider controls the magnitude of the zero/pole po-
sition, i.e. its distance from the origin in the Gaussian Plane. Its
value is constrained between 0 and 1 to keep positions inside the
unit circle. However, for zeros, an additional out parameter allows
them to be placed outside the unit circle. For poles, we impose an
internal maximum radius of 0.99999 to prevent them from reach-
ing or exceeding the unit circle, since poles on or outside the unit
circle would make the causal filter unstable.

The angle slider sets the phase of the zero/pole position, nor-
malized from 0 (DC component) to 1 (Nyquist frequency). The
configured position always lies in the upper half of the complex
plane; the conjugate with negative imaginary part is handled auto-
matically (as illustrated in Fig. 2 and Fig. 3). Alternatively, users
can enter or drag a frequency value in hertz using the correspond-

ing editable label.
The type toggle button selects whether the filter element is a

2-zero or a 2-pole.
The active toggle button turns the element on or off. Inactive

rows are shown in a lighter color for visual distinction.
The gain label, which is both editable and draggable, specifies

the input gain for the filter element in decibels. This is useful for
compensating any unwanted gain added by the element.

The out checkbox applies only to zeros. When activated, it
inverts the effective radius, placing the zero outside the unit circle.
If clicked while the element is a pole, it will convert the pole into
a zero. Switching the type back to pole will reset this checkbox.
This feature is useful for creating all-pass filters.

The 1x checkbox converts the filter element into a first-order
filter (1-zero or 1-pole), forcing its position to lie on the real axis.

Gaussian Plane
All parameters, except for the last two checkboxes (out and 1x),
can be modified by interacting with the Gaussian plane.

Right-clicking on an empty spot in the Gaussian plane will ac-
tivate the closest inactive filter element, and a circle (for zeros) or a
cross (for poles) will appear at the corresponding position based on
the element’s parameters. Right-clicking on a circle or cross will
deactivate the corresponding filter element. A semi-transparent
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Figure 2: The plugin GUI after setting some parameters. A cut at the Nyquist frequency is obtained by placing a 1-zero element (thinner
circle) at −1 and a 1-pole element (thinner cross) at −0.995. Two matching pairs of 2-zero and 2-pole are also placed (superimposed
crosses and zeros), with inverted zero magnitudes. This has no effect on the magnitude response, but only on the phase response.

copy of the circle or cross will show the conjugate position. The
circle or cross becomes thinner for first-order filter elements, and
the circle will have a dot in its center if the zero’s magnitude is
inverted (i.e., if the out checkbox is checked).

Dragging a circle or cross will modify both the radius and an-
gle parameters of the filter element. This interaction allows for
exploration of the relationship between zero/pole placements and
the resulting frequency response.

Double-clicking a circle or cross will toggle a 2-zero element
to a 2-pole element and vice-versa. Finally, scrolling over a cir-
cle or cross will adjust the input gain for the corresponding filter
element.

Shortcuts
The shortcuts panel was implemented in the prototype version of
the software. It was later excluded because user experiments showed
it was not useful. It used to provide overall controls for the param-
eters:

• the All On and All Off buttons toggled all filter elements on
and off, respectively;

• the Phases x2 and Phases ÷2 buttons used to multiply and
divide, respectively, the phases of all filter elements;

• the Swap Ps/Zs button used to swap zeros and poles.

3.2.2. Plots

The plots panel displays the DTFT (Discrete-Time Fourier Trans-
form) of the digital filter. It takes into account all active elements,
their input gain, and the master output gain. The top axis visu-
alizes the magnitude response, while the bottom axis shows the
phase response. The abscissa values are in hertz, and the top axis
also displays a label indicating the current sample rate.

Two buttons allow for logarithmic scaling of the plots. The
left button (lin/dB) toggles the magnitude values between linear
amplitudes and decibels, while the right button (lin/log) switches
the frequency scale between linear and logarithmic. In logarithmic
frequency mode, the Nyquist frequency is displayed as the highest
frequency, and 1 kHz is the central frequency.

A third plot is next to the Gaussian plane, where the shortcuts
panel used to be. It shows the (truncated) impulse response of
the filter in the time domain. Because of the aspect ratio of the
available space, we decided to place the discrete-time (in samples)
on the vertical axis and the amplitude values on the horizontal axis.

3.2.3. Filter Design

The filter design panel allows the user to define a filter using higher-
level parameters, instead of directly manipulating pole and zero
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Figure 3: The plugin GUI with parameters set though the filter designer panel to obtain a Chebyshev Type-II lowpass filter. We used the
maximum filter order (12), a cutoff frequency of 4.5 kHz and 35 dB of stopband ripple.

positions. Four filter types are currently supported: Butterworth,
Chebyshev Type-I, Chebyshev Type-II (Fig. 3), and Elliptic.

For all filter types, the user can specify whether the filter should
be low-pass or high-pass, the filter order (ranging from 2 to 10),
and the cut-off frequency.

Chebyshev Type-I and Elliptic filters also include a pass-band
ripple parameter (in decibels), while Chebyshev Type-II and Ellip-
tic filters feature a stop-band ripple parameter. Only the parameters
that are relevant to the selected filter type are visible.

The Update button applies the specified parameters to the fil-
ter elements, calculating the corresponding low-level parameters.
We followed a similar approach to the filter design functions in
scipy.signal [16]. When the Auto button is enabled, the filter
parameters are automatically applied whenever a change is made.

3.2.4. Top Menu

The top menu houses functionalities that don’t neatly fit into any
other panel.

The Undo and Redo buttons allow you to revert or restore
changes to the filter parameters, respectively. The Reset button
restores all parameters to their default values.

The Load and Save buttons allow you to read or write the soft-
ware parameters to an XML file. The Export button, on the other
hand, saves the filter element coefficients to a CSV file: the i-th

row contains the MA coefficients (b0 = 1, b1, b2), the AR coeffi-
cients (a0 = 1, a1, a2), and the gain coefficient of the i-th active
filter element.

The Auto/Man button next to the Gain label toggles the auto-
gain feature on or off. When enabled, the auto-gain feature au-
tomatically adjusts the gain coefficient of a filter element when-
ever any of its parameters change. The gain is computed using
a heuristic, gradient-based optimization method that approximates
the overall filter DTFT magnitude peak. To prevent excessive over-
compensation, this method is stopped early when poles are close to
the unit circle, as they tend to produce very high magnitude peaks.
This auto-gain feature is compatible with the filter design.

3.2.5. Environment Variables

To further customize the experience with this software, we support
several environment variables

ZEPOLA_N_FILTER_ELEMENTS selects the number of fil-
ter elements in the software. Although increasing by much this
variable from the default (12) can result in a messy parameter panel
and a slow auto-gain feature, it can be still useful for visualizing
filters built with the filter designer.

ZEPOLA_IR_PLOT_LENGTH determines the length of the
IR plot, in samples. Increasing by much this variable from the
default (64) can result in performance loss.
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ZEPOLA_POLE_MAGNITUDE_CEIL is the maximum radius
for a pole element. Setting this to 1 makes it possible to place poles
directly on the unit circle, resulting in unstable filters. Default is
1− 10−5.

ZEPOLA_INVERSE_MAGNITUDE_FLOOR is the minimum
radius for elements with inverted magnitudes. Setting this closer
to 0 makes it possible to place poles or zeros closer to infinity,
possibly causing instability or division errors. Default is 10−6.

ZEPOLA_FILTER_ELEMENT_GAIN_FLOOR_DB is the min-
imum gain for an element, in decibel. Default is −128 dB. De-
creasing this value by much could cause floating-point underflow
errors.

ZEPOLA_ALLOW_INVERTED_POLES can be set to true
to allow inverted magnitude for pole elements. This results in ex-
tremely unstable filters, but we received feedback by some people
who are curious to visualize these kinds of scenarios.

4. RESULTS

To evaluate the effectiveness of the proposed tool, two focus groups
were organized to gather feedback and suggestions. The first group
consisted of three undergraduate students from the sound and mu-
sic computing programme, while the second group consisted of
three signal processing lecturers. The students had all already
taken the digital signal processing exam.

The focus groups were placed in front of a single computer
with the application running. The first phase involved allowing the
participants to explore the tool freely without any prior training
on its features. Afterward, some information was provided, and
finally, an unstructured interview was conducted.

4.1. Students

Overall, the students were enthusiastic about the tool. Initially,
they encountered some difficulty controlling the gain of the re-
sponse, but once they understood the auto-gain feature, they ex-
pressed that they would leave it enabled by default. Apart from a
few minor GUI suggestions (e.g., adding the the label Hz on top of
the pole/zero frequency label and making the toggle styles consis-
tent across the interface), they enthusiastically confirmed that the
tool would have been highly beneficial for their learning. They
mentioned that it went “beyond the formulae” and would have
been especially useful if it had been introduced during or imme-
diately after the mathematical introduction to digital filters, but
always alongside the display of the mathematics involved.

4.2. Lecturers

Initially, the lecturers were somewhat puzzled, perceiving it as an
unusual filter design tool. However, they soon recognized its peda-
gogical value and suggested additional features such as the ability
to place zeros outside the unit circle, the option to display the im-
pulse response, and the ability to force zeros and poles to be real-
valued. They mentioned that they would consider using the tool
in their classrooms, alongside the rubber sheet metaphor, to help
visualize filter design concepts.

In response, we implemented many of the suggested GUI im-
provements, including the ability to place zeros outside the unit
circle (using a graphical metaphor to save GUI space), the ability
to configure single (real) poles and zeros, and the impulse response
display. We decided not to enable the auto-gain feature by default,

as we suspect that students might overlook the gain property, and
we wanted to ensure that they were consciously aware of this pa-
rameter.

5. CONCLUSIONS

We presented ZePolA, a tool designed to facilitate intuitive learn-
ing of the DSP concepts involved in digital filters and digital LTI
systems in general. The tool was evaluated by focus groups con-
sisting of both students and professors, receiving positive feedback
from both groups.

The tool is available as an open-source project on GitHub1,
along with compiled binaries for Windows, macOS, and Linux.

In future releases, we plan to add several features, includ-
ing the display of the system’s impulse response, visualization of
filter coefficients, additional filter design techniques (such as bi-
quadratic filters), direct manipulation of the magnitude response,
an overlaid spectrum analyzer on the magnitude response, and
step-by-step linear prediction of the input spectrum to track how
the poles move on the plane during each iteration.
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