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ABSTRACT

Audio effects (AFXs) are essential tools in music production, fre-
quently applied in chains to shape timbre and dynamics. The or-
der of AFXs in a chain plays a crucial role in determining the fi-
nal sound, particularly when non-linear (e.g., distortion) or time-
variant (e.g., chorus) processors are involved. Despite its impor-
tance, most AFX-related studies have primarily focused on esti-
mating effect types and their parameters from a wet signal. To
address this gap, we formulate AFX chain recognition as the task
of jointly estimating AFX types and their order from a wet signal.
We propose a neural-network-based method that embeds wet sig-
nals into a hyperbolic space and classifies their AFX chains. Hy-
perbolic space can represent tree-structured data more efficiently
than Euclidean space due to its exponential expansion property.
Since AFX chains can be represented as trees, with AFXs as nodes
and edges encoding effect order, hyperbolic space is well-suited
for modeling the exponentially growing and non-commutative na-
ture of ordered AFX combinations, where changes in effect or-
der can result in different final sounds. Experiments using guitar
sounds demonstrate that, with an appropriate curvature, the pro-
posed method outperforms its Euclidean counterpart. Further anal-
ysis based on AFX type and chain length highlights the effective-
ness of the proposed method in capturing AFX order.

1. INTRODUCTION

Audio effects (AFXs) are essential tools in modern music compo-
sition, live performance, and studio production [1]. Each type of
AFX (e.g. delay, chorus, distortion) has its own unique character-
istics [2], and sound engineers leverage these characteristics to ob-
tain the desired sound. In practice, musicians and sound engineers
apply multiple AFXs in sequence to a given audio signal to achieve
their intended result [3]. The sequence of AFXs is referred to as
an AFX chain. The resulting sound is highly dependent on the or-
der of AFXs in the chain, particularly when it includes non-linear
or time-variant processors such as distortion or chorus. Therefore,
considering the order of AFXs is essential when addressing AFX-
related tasks.

Most AFX studies address the estimation of the types and pa-
rameters of AFXs from audio signals processed by AFX chains,
typically under simplified assumptions about the structure of the
chain. In [4], this estimation was performed under the assump-
tion that both the number and the order of AFXs in the chain are
fixed. In [5], the number of AFXs was fixed, but the order was
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disregarded. A few studies addressed a broader problem [6,7]: re-
covering the original (dry) signal from a signal processed by an
unknown AFX chain. One approach first detects which AFXs are
present and then removes their effects in an order-agnostic man-
ner [6], while another iteratively estimates and removes the most
recently applied effect [7]. A method proposed in [8] uses a graph
neural network to handle more complex, graph-like structure of
AFX chains.

Despite progress in AFX studies, the order of AFXs within a
chain has received less attention. Many previous studies consider
AFX order only partially or indirectly—for example, by predicting
only the types of AFXs used in the chain [4,5], or by iteratively es-
timating the last-applied AFX from the output signal [6, 7]. How-
ever, these approaches have limitations. Since they do no explicitly
handle the order of AFXs, they may fail to capture differences in
sound that arise from different effect chains. In addition, some
methods rely on iterative inference over effect permutations, the
number of which increases exponentially with the length of the
AFX chain. This motivates us to address the problem of jointly es-
timating AFX types and their order, which we refer to as the AFX
chain classification problem.

For the AFX chain classification problem, we focus on hy-
perbolic space, a non-Euclidean space characterized by constant
negative curvature. In this space, the distance from the origin in-
creases exponentially, in contrast to the linear growth in Euclidean
space. This geometric property aligns naturally with the struc-
ture of hierarchical data, which can be represented as trees where
the number of nodes increases exponentially with depth. As a re-
sult, hyperbolic space enables more efficient embedding of tree-
like structures than Euclidean space [9]. Leveraging this property,
hyperbolic space has shown promising results in various audio sig-
nal processing tasks, including musical instrument sound synthe-
sis [10], audio source separation [11, 12], and anomalous sound
detection [13].

Building on this insight, we propose a neural-network-based
method that jointly estimates AFX types and their order by embed-
ding audio signals into hyperbolic space. AFX chains can be repre-
sented as trees, with AFXs as nodes and edges encoding the effect
order. Consequently, hyperbolic space is better suited for model-
ing the exponentially growing and non-commutative structure of
AFX combinations than Euclidean space. To this end, we design a
neural network that learns hyperbolic embeddings of input signals
and performs AFX chain classification using multinomial logistic
regression (MLR) in hyperbolic space. This architecture enables
the model to capture the structural properties of effect chains in a
geometrically consistent manner. To the best of our knowledge,
this paper is the first to incorporate hyperbolic embeddings into
AFX chain classification.

The remainder of this paper is organized as follows: Sec-
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Figure 1: Schematic illustration of Poincaré ball model. (a)
Geodesics (colored curves) between points in two-dimensional
Poincaré ball, representing shortest paths in hyperbolic geome-
try. (b) Multinomial logistic regression in Poincaré ball, with
geodesics as decision boundaries partitioning space into classifi-
cation regions.

tion 2 reviews the mathematics of hyperbolic space and MLR in
this space. Section 3 introduces the proposed network architecture
and method, explaining how hyperbolic space is incorporated into
the network. Section 4 presents experiments on AFX chain classi-
fication, including comparisons between the proposed method and
its Euclidean counterpart. Finally, Section 5 concludes the paper.

2. HYPERBOLIC SPACE

In this section, we provide the mathematical background neces-
sary for extending MLR to hyperbolic space. We begin by intro-
ducing the basic concepts of Riemannian geometry, focusing on
the Poincaré ball, one realization of hyperbolic space. We then de-
scribe key mathematical tools used for classification in this space
and finally review an extension of MLR to hyperbolic space, fol-
lowing [11].

2.1. Riemannian Manifold

A Riemannian manifold is defined as a pair (M, g), where M is a
differentiable manifold and g is a Riemannian metric. Informally,
a manifold is a space that locally resembles Euclidean space, al-
lowing us to define smooth operations such as differentiation. At
each point x ∈ M, there exists a local linear approximation of
the space called the tangent space TxM. The Riemannian metric
g = (gx)x∈M assigns an inner product to each tangent space:

∀u,v ∈ TxM, ⟨u,v⟩x = uTgxv. (1)

This allows us to measure geometric quantities such as angles and
distances in a smoothly varying manner across the manifold.

By integrating local information defined by gx, we can com-
pute global quantities such as the length of curves on M. The
shortest path between two points, with respect to g, is called a
geodesic, which generalizes the concept of a straight line in Eu-
clidean space. The exponential map, denoted by expx, maps a
tangent vector at x to a point on the manifold along the geodesic
starting at x. Its inverse, the logarithmic map logx, projects a point
on the manifold back to the tangent space TxM.

2.2. Poincaré Ball

A hyperbolic space is a Riemannian manifold with a constant neg-
ative curvature −c and there are several equivalent representations
of hyperbolic space. In this paper, we adopt the n-dimensional
Poincaré ball model because it provides closed-form expressions
for the metric and geodesic operations, making it well-suited for
integration with neural networks.

This model is defined as a Riemannian manifold (Bn
c , gc). The

manifold Bn
c is the open n-dimensional ball of radius 1/

√
c:

Bn
c = {x ∈ Rn | c ||x||2 < 1}. (2)

The Riemannian metric gc(x) is given by

gc(x) = (λc
x)

2gE, (3)

where gE is the standard Euclidean metric, i.e., the n-dimensional
identity matrix, and λc

x = 2/(1 − c∥x∥2) is known as the con-
formal factor. This factor adjusts the local scale of the Euclidean
metric to account for the negative curvature of the space. As a re-
sult, the volume of this space increases exponentially with distance
from the origin, in contrast to the polynomial growth observed in
Euclidean geometry.

Figure 1(a) illustrates points in the two-dimensional Poincaré
ball and the geodesics connecting them. Using λc

x, the inner prod-
uct and norm at a point x ∈ Bn

c are defined as

⟨u,v⟩cx = (λc
x)

2⟨u,v⟩, ∥v∥cx = λc
x∥v∥, (4)

for u,v ∈ TxBn
c . Here, ⟨·, ·⟩ denotes the standard Euclidean inner

product. The geodesic distance between two points x,y ∈ Bn
c is

given by

dc(x,y) =
2√
c
tanh−1 (√c ∥ − x⊕c y∥

)
, (5)

where ⊕c denotes the Möbius addition, a generalization of vector
addition that preserves the geometry of hyperbolic space. This
operation is defined as

x⊕c y =
(1 + 2c⟨x,y⟩+ c∥y∥2)x+ (1− c∥x∥2)y

1 + 2c⟨x,y⟩+ c2∥x∥2∥y∥2 . (6)

Unlike standard vector addition in Euclidean space, Möbius addi-
tion is non-commutative: x⊕c y ̸= y⊕c x in general. This high-
lights how hyperbolic geometry preserves directional relationships
that depend on operation order.

Although exponential and logarithmic maps can be defined at
any point in Bn

c , we restrict our attention to the origin 0 to simplify
computation and retain closed-form expressions. These maps are
given by

expc
0(v) =

tanh(
√
c ∥v∥)√

c ∥v∥
v, logc0(y) =

tanh−1(
√
c ∥y∥)√

c ∥y∥
y,

(7)
for v ∈ Rn \ {0} and y ∈ Bn

c \ {0}.

2.3. Hyperbolic Multinomial Logistic Regression

In Euclidean space, MLR computes class logits based on the dis-
tance between an input embedding z ∈ Rn and each of the K
class hyperplanes. Let k = 1, . . . ,K be the class index. The hy-
perplane corresponding to class k, denoted by Hak,pk , is defined
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by its normal vector ak ∈ Rn and a point pk ∈ Rn lying on the
hyperplane. The probability of class k is given by

p(κ = k | z) ∝ exp (sign(⟨−pk + z,ak⟩)∥ak∥ d(z, Hak,pk )) ,
(8)

where κ is a random variable denoting the class label. The function
d(z, Hak,pk ) denotes the Euclidean distance from the point z to
the hyperplane Hak,pk .

Using the mathematical tools introduced in Section 2.2, the
Euclidean MLR can be extended to the Poincaré ball model [14].
We first map Euclidean embeddings z ∈ Rn to hyperbolic embed-
dings zh ∈ Bn

c using the exponential map defined in Eq. (7):

zh = expc
0(z). (9)

We then replace the standard addition with the Möbius addition
⊕c, and compute inner products and norms using the geometry of
Bn

c to obtain the hyperbolic counterpart of Eq. (8). Specifically, we
use the hyperbolic inner product ⟨·, ·⟩cx and norm ∥ · ∥cx defined in
Section 2.2. The hyperplane Hh

ah
k
,ph

k
in Bn,h

c is defined as the set

of points equidistant to ph
k along the geodesic direction determined

by the tangent vector ah
k:

Hh
ah
k
,ph

k
=

{
x ∈ Bn

c | ⟨−ph
k ⊕c x,a

h
k⟩ = 0

}
. (10)

Using these notations, the hyperbolic extension of Eq. (8) is given
as

p(κ = k | zh) ∝ exp

(λph
k
∥ah

k∥
√
c

sinh−1(rk)

)
, (11)

rk :=
2
√
c⟨ph

k ⊕c z
h,ah

k⟩
(1− c∥ − ph

k ⊕c zh∥2)∥ah
k∥

, (12)

where ph
k ∈ Bn

c and ah
k ∈ Tph

k
Bn
c \ {0}. As the curvature param-

eter c → 0, Eq. (11) converges to the Euclidean case.
In Euclidean space, MLR separates data using linear decision

boundaries. In contrast, when applied to the Poincaré ball model,
it uses geodesic decision boundaries (see Fig. 1(b)), resulting in
nonlinear decision regions that better reflect hierarchical relation-
ships in the data.

3. PROPOSED METHOD

3.1. Motivation and Strategy

The goal of the AFX chain classification task is to identify both the
types and the order of AFXs applied to a given audio signal s. Let
A denote the set of all possible AFX chains constructed from F
effect types, with a maximum chain length of L. Each AFX chain
a ∈ A is treated as a distinct class, including the empty chain
that applies no effects. The number of possible chains is given by
|A| =

∑L
l=0 F !/(F − l)!, where l denotes the length of the AFX

chain and F ! is the factorial of F .
To address this problem, we design a neural network that em-

beds input audio signals into hyperbolic space and performs clas-
sification based on the applied AFX chain. Hyperbolic space is
particularly suitable for this task for two main reasons. First, AFX
chains can be interpreted as tree-like structures, where the signal
is progressively modified by each effect unit in sequence. The
number of possible chains increases exponentially with the number
of effects, mirroring the exponential expansion property of hyper-
bolic space. This structural analogy allows the space to efficiently
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Figure 2: Illustrative comparison of baseline and proposed net-
works for AFX chain classification. Baseline network classifies
input audio signals in Euclidean space, whereas proposed network
classifies them in hyperbolic space.

represent the combinatorial complexity of AFX chains. Second,
AFX chains are inherently order-sensitive: changing the order of
processors can drastically alter the resulting sound. For example,
distortion followed by chorus yields a different result than the re-
verse order. This characteristic aligns with the non-commutativity
of Möbius addition, as mentioned in Section 2.2, where the or-
der of operations affects the outcome. Hyperbolic geometry thus
provides a natural framework for capturing the directional depen-
dencies present in ordered effect chains.

3.2. Network Architecture

On the basis of the considerations in Section 3.1, we develop a
neural network architecture utilizing the Poincaré ball. It consists
of four modules: feature extraction module, projection module,
mapping module, and classifier module (see Fig. 2).

The feature extraction module analyzes the input audio to ex-
tract musically and acoustically meaningful representations. While
previous work has often relied on hand-crafted features such as
spectral, cepstral, or harmonic descriptors [4], or time-frequency
features like mel-frequency cepstral coefficients and mel spectro-
grams [5], such representations may not fully capture the musi-
cal or perceptual characteristics relevant to modeling AFX chains.
To extract richer and more context-aware features, we use MERT
[15], a large-scale pretrained model for music representation learn-
ing. MERT is trained on a diverse collection of musical audio and
is capable of capturing both low-level acoustic information and
higher-level temporal structure through its transformer-based ar-
chitecture. It processes raw waveforms via convolutional layers,
followed by 24 stacked Transformer encoders. We use the output
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of the final layer and apply attention pooling to obtain a 1024-
dimensional embedding in Euclidean space. The projection mod-
ule is a feedforward neural network that maps the embedding to a
J-dimensional feature vector. It consists of I fully connected (FC)
blocks: the first I−1 blocks each include a FC layer, a rectified lin-
ear unit non-linearity, and layer normalization; the last block has
only a FC layer. This transformation reshapes the representation
to make it more amenable to geometric classification. The map-
ping module adapts the projected embedding to the target geomet-
ric space by applying the exponential map at the origin, as defined
in Eq. (7), to project the Euclidean embedding onto the Poincaré
ball. The classifier module performs multi-class classification us-
ing MLR for the Poincaré ball, as described in Section 2.3. The
projection and classifier modules are trained to predict the AFX
chain label from the input waveform using the cross-entropy loss.

The proposed network can be reduced to its Euclidean counter-
part by replacing the exponential map in the mapping module with
the identity function, and substituting the hyperbolic MLR in the
classifier module with its Euclidean version. This results in a stan-
dard architecture that operates entirely in Euclidean space, serving
as a baseline for comparison with the hyperbolic approach. The
Euclidean network is trained in the same way as the hyperbolic
one, as illustrated in Fig. 2.

4. EXPERIMENTS

4.1. Experimental Setup

Data preparation. We focus on guitar recordings for the AFX
chain classification task, following [5]. We first collected clean
(dry) recordings from Dataset 4 of the IDMT-SMT-GUITAR cor-
pus, totaling 1.5 hours of audio. Then, we divided them into
chunks of 10 seconds, collecting 533 samples of clean audio. To
construct pairs of dry and AFX-chain-applied audio signals, we
used Pedalboard1, a Python library that can apply AFXs to audio
signals without a digital audio workstation. Specifically, we se-
lected three commonly used AFX types—delay, chorus, and dis-
tortion—and generated all possible permutations where each type
appears at most once. This yielded |A| = 16 chains (including
the empty chain), as F = 3 and L = 3. We note that changing
the order of these effects produces different audio outputs. For
each chain, AFX parameters were randomly sampled within real-
istic ranges (see Table 1) to reflect practical usage scenarios. The
resultant dataset consisted of 8,528 samples of dry and processed
signals (23.7 hours in total), which we randomly split into training,
validation, and test sets with a 70/15/15 ratio.
Compared networks. We compared the proposed network with
its Euclidean counterpart described in Section 3, varying the output
feature size of the projection module: J = 64, 128, 256, and 512.
In both models, the number of fully connected (FC) layers in the
projection module was fixed at I = 3, with the hidden layers set
to J/2 units. For the proposed network, we additionally varied the
curvature parameter with values c = 0.001, 0.01, 0.1, and 1.0.
Training setting. Training was performed for 100 epochs us-
ing the cross-entropy loss between the predicted and ground-truth
AFX chain classes. For optimization, we used the AdamW opti-
mizer [16] for the Euclidean model and the Riemannian Adam op-
timizer [17] for the hyperbolic model. The latter is a hyperbolic ex-
tension of the Adam optimizer, implemented in the geoopt library
[18]. We applied weight decay with a coefficient of 1.0 × 10−5

1https://github.com/spotify/pedalboard

Table 1: Functions of Pedalboard library corresponding to AFXs
used, their parameters, and randomization ranges. For parameters
not listed here, default values provided by library were used

Pedalboard Functions Parameter Range Unit

pedalboard.Chorus
rate hz 0.1–1.5 Hz
depth 0.1–1.0 -

feedback 0.0–0.5 -

pedalboard.Distortion drive db 5–15 dB

pedalboard.Delay delay seconds 0.1–1.0 s
feedback 0.0–0.75 -

Table 2: Averages and standard errors of macro and micro F1

scores obtained with Euclidean and proposed (hyperbolic) net-
works

Geometry c J Macro F1 Micro F1

Euclidean

- 64 0.748 ± 0.003 0.750 ± 0.003
- 128 0.737 ± 0.011 0.740 ± 0.011
- 256 0.743 ± 0.006 0.747 ± 0.005
- 512 0.724 ± 0.002 0.727 ± 0.002

Hyperbolic

0.001 64 0.748 ± 0.007 0.752 ± 0.007
0.001 128 0.736 ± 0.003 0.739 ± 0.003
0.001 256 0.725 ± 0.003 0.729 ± 0.003
0.001 512 0.740 ± 0.004 0.742 ± 0.004

Hyperbolic

0.01 64 0.736 ± 0.005 0.740 ± 0.005
0.01 128 0.745 ± 0.007 0.747 ± 0.007
0.01 256 0.718 ± 0.003 0.721 ± 0.004
0.01 512 0.736 ± 0.007 0.739 ± 0.006

Hyperbolic

0.1 64 0.744 ± 0.003 0.747 ± 0.003
0.1 128 0.731 ± 0.006 0.734 ± 0.006
0.1 256 0.697 ± 0.026 0.705 ± 0.024
0.1 512 0.722 ± 0.007 0.725 ± 0.007

Hyperbolic

1.0 64 0.751 ± 0.006 0.755 ± 0.006
1.0 128 0.756 ± 0.007 0.758 ± 0.007
1.0 256 0.746 ± 0.004 0.752 ± 0.003
1.0 512 0.734 ± 0.009 0.740 ± 0.007

and used a batch size of 32. The learning rate was initialized
at 1.0 × 10−4 and halved whenever the validation loss did not
improve for five consecutive epochs. For each configuration, we
chose the model that achieved the lowest validation loss.

Evaluation metrics. As evaluation metrics, we used macro and
micro F1 scores as in [5]. The macro F1 score computes the F1

score for each class independently and averages them, giving equal
weight to all classes regardless of their frequency. In contrast, the
micro F1 score aggregates the contributions of all classes to com-
pute an overall F1 score, which tends to reflect performance on
more frequent classes. To account for variance due to random ini-
tialization, we report the average and standard error of each metric
over three different random seeds.
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(a) Euclidean network. (b) Proposed network.

Figure 3: Confusion matrices of (a) Euclidean and (b) proposed networks. Each label is represented as a tuple of three elements, where
each position corresponds to an effect slot in the chain. For example, (”, ”, ”) indicates no AFX applied, (’delay’, ”, ”) represents a single
delay effect, and (’chorus’, ’delay’, ’distortion’) denotes a chain where chorus is applied first, followed by delay and distortion.

4.2. Results

Table 2 shows the macro and micro F1 scores achieved by the
Euclidean network and the proposed hyperbolic networks across
different embedding dimensions J and curvature values c. The
proposed network with c = 1.0 consistently achieved higher av-
erage macro and micro F1 scores than the Euclidean network for
J = 64, 128, and 256. The best performance was observed at
J = 128 and c = 1.0, with average macro and micro F1 scores
of 0.756 and 0.758, respectively. Although the performance gains
over the Euclidean network are modest, the improvements are con-
sistent when an appropriate curvature is used. These results high-
light the potential of hyperbolic space as a stable and effective em-
bedding space for AFX chain classification.

4.3. Analysis

To better understand what aspects of AFX chain classification ben-
efit from hyperbolic space, we analyzed the results in terms of
AFX type and order sensitivity.
Effect of AFX type and length. Figure 3 shows the confusion
matrices for the Euclidean and proposed hyperbolic networks. For
both models, we used the configurations that achieved the best F1

scores reported in Table 2. Prediction became increasingly diffi-
cult as the length of the AFX chain increased. In particular, AFX
chains containing both chorus and delay effects tend to be con-
fused. This may be because lowering the modulation parameter
of the chorus effect causes its output to resemble a signal where a
delayed version of the input is added to the input itself, making it
virtually similar to a delay effect.

Notably, both networks exhibited low confusion between
chains of different lengths, suggesting that the models accurately
inferred which AFX types were applied. When evaluating only the
presence of AFX types, where a prediction is considered correct if

it includes the correct set of effects regardless of their order, the
average macro and micro F1 scores were 0.986 and 0.986 for the
Euclidean networks, and 0.987 and 0.987 for proposed networks.
This negligible difference indicates that the improvement of the
proposed method primarily stems from its enhanced ability to cap-
ture AFX order, rather than simply identifying which effects are
present.
Analysis of order sensitivity. To further explore this, we analyzed
partial AFX order prediction using two metrics: first-N F1 score
and latest-N F1 score. The first-N F1 score quantifies how well
the first N effects in the predicted and ground-truth chains match
in order. If a chain contains fewer than N effects, it is padded
with empty entries to ensure a consistent length. The latest-N
F1 score is computed in the same way, but considers the last N
effects instead. Since the results for N = 3 are identical to those
in Table 2, we report only the scores for N = 1 and 2.

Tables 3 and 4 show the first- and latest-N F1 scores, respec-
tively. For each network, we used the configuration that achieved
the best performance in Table 2: J = 64 for the Euclidean net-
work and (c, J) = (1.0, 128) for the proposed network. Across
all evaluated settings, the proposed network achieved comparable
or better performance than its Euclidean counterpart. This consis-
tent advantage supports the effectiveness of hyperbolic geometry
in capturing the order-sensitive structure of AFX chains.

This analysis also reveals a common tendency across both
models. Both metrics dropped from N = 1 to N = 2 as chain
length increased, which is consistent with the performance degra-
dation seen in Table 2. Interestingly, first-1 scores consistently
outperformed latest-1 scores, suggesting that both models are bet-
ter at identifying the earliest-applied AFX. However, for N = 2,
the latest-N scores surpassed the first-N ones. This may indicate
that while the first AFX dominates the representation, errors accu-
mulate more rapidly when attempting to track the entire sequence
from the beginning. In contrast, although predicting later AFXs
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Table 3: Micro and macro first-N F1 scores obtained with Eu-
clidean and proposed network

Geometry First-1 First-2

Macro Micro Macro Micro

Euclidean 0.860 0.833 0.791 0.753
± 0.003 ± 0.003 ± 0.003 ± 0.003

Hyperbolic 0.866 0.840 0.798 0.762
± 0.004 ± 0.006 ± 0.005 ± 0.007

Table 4: Micro and macro latest-N F1 scores obtained with Eu-
clidean and proposed network

Geometry Latest-1 Latest-2

Macro Micro Macro Micro

Euclidean 0.848 0.817 0.801 0.765
± 0.002 ± 0.003 ± 0.002 ± 0.002

Hyperbolic 0.852 0.822 0.806 0.771
± 0.003 ± 0.005 ± 0.004 ± 0.005

is generally more difficult, the degradation from 1 to 2 effects is
less steep when evaluated in reverse. In contrast, although predict-
ing later AFXs is generally more difficult, the degradation from 1
to 2 effects is less steep when evaluated in reverse. These obser-
vations may raise questions about the suitability of order-agnostic
methods [6] or approaches that rely on detecting the last-applied
AFX [7]. We leave its further investigation as future work.

5. CONCLUSIONS

We proposed an AFX chain classification method that jointly es-
timates AFX types and their order. To construct the proposed
method, we used the Poincaré ball model, a realization of hyper-
bolic space, to better capture the order-sensitive and combinato-
rially growing nature of AFX chains. To perform classification
on hyperbolic space, we added an extra mapping at the end of
a Euclidean baseline network, then applied hyperbolic MLR to
embeddings that correspond to input audio signals. Experimen-
tal results on guitar recordings demonstrated that, with an appro-
priate curvature, the proposed method consistently outperforms its
Euclidean counterpart. Further analysis revealed that these per-
formance gains stem primarily from improved modeling of AFX
order, rather than AFX type identification alone. These findings
highlight the potential of hyperbolic geometry for the order-aware
AFX chain classification.
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