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ABSTRACT

In this paper, we present an approach to the neural modeling of
overdrive guitar pedals with conditioning from a cross-circuit and
cross-setting latent space. The resulting network models the be-
havior of multiple overdrive pedals across different settings, offer-
ing continuous morphing between real configurations and hybrid
behaviors. Compact conditioning spaces are obtained through un-
supervised training of a variational autoencoder with adversarial
training, resulting in accurate reconstruction performance across
different sets of pedals. We then compare three Hyper-Recurrent
architectures for processing, including dynamic and static Hyper-
RNNs, and a smaller model for real-time processing. Additionally,
we present pOD-set, a new open dataset including recordings of
27 analog overdrive pedals, each with 36 gain and tone parame-
ter combinations totaling over 97 hours of recordings. Precise pa-
rameter setting was achieved through a custom-deployed recording
robot.

1. INTRODUCTION

Virtual analog modeling (VA) of audio effects has long been a
topic of interest in audio signal processing [1} 2} 13]. VA meth-
ods aim to emulate the behavior of analog circuits in the digital
domain to replicate the sonic characteristics of vintage and mod-
ern hardware. Among these, overdrive pedals have been a popu-
lar target for VA modeling due to their widespread use in electric
guitar and bass processing [4]]. Traditional methods for VA rely
on circuit-based approaches, such as Wave Digital Filters [5] and
nodal analysis [6]], which yield accurate results as they are pro-
vided with detailed knowledge of the internal circuitry. In recent
years, data-driven black-box approaches leveraging deep learning
have gained attention for their ability to emulate audio effects with-
out explicit knowledge of circuit design. Neural networks trained
on input-output audio have shown promising results in replicat-
ing complex effect behaviors [7, [8]. While high accuracy can be
achieved, integrating control over effect parameters can be chal-
lenging. Conditioning methods have been proposed to allow pa-
rameter control in black-box neural models [9], requiring datasets
with a large number of combinations of control parameters.
Beyond precise emulation of individual effects, only few re-
cent studies have explored the interpolation capabilities of neu-
ral networks for blending multiple audio effects into new sonic
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textures or discovering new effects [10, |11} [12]. Moreover, lim-
ited interest has been devoted in the literature to the exploration
of multiple versions of the same effect with different settings. In
the context of audio effects, the sonic palette of analog overdrive
pedals is rather limited, but different circuit design choices can
lead to subtle differences in harmonic content and frequency re-
sponse. As such, instead of conditioning a hybrid overdrive model
with parameter and pedal information, we argue that a compact la-
tent conditioning space can be used for seamless morphing among
multiple effect parameters and circuits.

In this paper, we present an approach to the neural model-
ing of overdrive pedal effects conditioned with data from a cross-
circuit and cross-setting latent space. The proposed approach mod-
els the behavior of multiple overdrive pedals at once, each with
different settings. Cross-circuit/setting conditioning is achieved
through a compact latent space obtained through a latent extractor
component, which consists of a Variational Autoencoder (VAE)
with an adversarial component. The latent extractor is trained on
sinusoidal sweeps from many guitar pedals and parameters set-
tings, producing an 8-dimensional latent vector for each. Latent-
space vectors are then used as conditioning signals for a Recur-
rent Neural Network (RNN), that processes the input audio and
generates the output signal. Finally, the processing network can
be used for inference by feeding it with input audio and an 8D
conditioning vector. Therefore, the VAE and the RNN are trained
separately, with the processing network with conditioning being
adapted from [9]. Our method is validated also thanks to the Para-
metric Overdrive pedal dataset (pOD-set), a newly collected open-
source dataset, which spans across 27 analog overdrive pedals in
multiple configurations, acquired using a custom-designed robot.
Finally we propose a 2D user interface for controlling the model-
ing network in real-time.

The neural modeler is released as open-source (GPLv3 li-
cense) on GitHub, along with the code and hardware specifications
for the recording robot|'} Audio demos are made available in the
project’s web pageﬂ The dataset is made available on Zenod(ﬂ
under the Creative Commons Attribution-NonCommercial 4.0 Li-
cense (CC BY—NCﬂ

The remainder of the paper is organized as follows. |[Section 2
provides an overview of works in neural effect modeling and repre-
sentation learning. [Section 3| describes the dataset and the record-
ing robot. presents the proposed method. de-
scribes the experimental setup. In[Section 6 we present and discuss
the achieved results. Conclusions are drawn in[Section 7}

Ihttps://github.com/domenicostefani/morphdrive
Zhttps://www.domenicostefani.com/morphdrive/
3https://doi.org/10.528 1/zenodo. 15389652

4https://creativecommons.org/licenses/by-nc/4.0/
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2. RELATED WORKS

2.1. Neural Effect Modeling

The emulation of audio effects through digital means is known as
VA [1}3]. Within VA, black-box approaches aim to match the out-
put of a target device using functions or machine learning models
without explicit knowledge of the internal circuitry [2, 113} 14} [15]].
Black-box approaches based on neural networks have been gaining
interest as of late, resulting in the development of various methods
for neural modeling of effects [[7, 9] and guitar amplifiers [4}8[16].
Useful resources on neural-network-based VA effect modeling are
the review by Vanhatalo ez al. [16] and the ongoing repository of
audio-effects research by Comunita et al. [17].

The main deep learning architectures used in neural effect
modeling are Convolutional Neural Networks (CNNs), RNNs, and
hybrid configurations [16]. Among the most prominent CNN-
based approaches, Damskigg et al. [[7] investigated real-time mod-
eling of distortion pedals through a modified WaveNet architec-
ture. A similar approach was used by Steinmetz et al. [18], who
chose a modified WaveNet architecture (i.e., TCN) with large di-
lation factors and shallow configuration to model complex non-
linear effects more efficiently. RNNs have been used in a number
of VA approaches, including Long Short-Term Memory (LSTM)
models [[19] and Gated Recurrent Unit (GRU) models [4]]. In [8]],
Wright ez al. compared several recurrent architectures to WaveNet
configuration, showing how LSTMs can provide lower processing
speeds at the expense of different degrees of accuracy with highly
non-linear effects. Instead, other hybrid approaches include the
use of architectures such as convolutional autoencoders [20} 21]).
Parameters and Conditioning: In neural effect modeling archi-
tectures, control parameters are integrated through model condi-
tioning methods [22]. Recently, Yeh et al. [9] compared several
conditioning methods for VA RNN architectures, evaluating their
performance in modeling an overdrive pedal and an optical com-
pressor. Conditioning methods require training with data recorded
on a target device with many combinations of physical control pa-
rameters. To automate the recording of such data, Juvela et al. [23]]
proposed a data-collection pipeline for conditioned neural ampli-
fier modeling, where relevant controls of a guitar amplifier were
operated through electric motors.

Hybrid and New Neural Effects: Beyond attempts at precisely
modeling existing audio effects, less interest has been devoted to
exploring hybrid effects that can enable sounds in between existing
effects, with a non-existent equivalent in the real world. Notably,
Simionato et al. [[10]] proposed the use of neural networks for mod-
eling multiple effects, resulting in a hybrid effect that can morph
between audio effects continuously, exploiting the inherent inter-
polation capabilities of deep models. The authors trained an RNN
with conditioning on a tube preamplifier, optical compressor, and
tape recorder, providing qualitative consideration on the hybrid ef-
fect obtained. Steinmetz et al. [11] proposed a steering method
based on training a model with fixed conditioning signals and an-
alyzing the behavior with varying conditioning signals during in-
ference. This work improved on the authors’ previous study on
overdrive networks with random weight initialization [24]. Narad-
owsky [12] proposed the use of VAEs for VA modeling of mul-
tiple guitar amplifiers. The author’s preliminary findings hinted
at the possibility of a single latent space being able to represent
encodings of multiple timbre transformations. However, despite
the strength of VAEs for interpolation between sounds, the au-
thor found the sound generation abilities of the VAE to be in-

ferior to those of a WaveNet architecture. Conversely, the sole
WaveNet did not perform well when trying to interpolate between
existing effects. Nevertheless, while VA modeling of existing ef-
fects is a well-defined task with known quantitative evaluation pro-
cedures, discovering new effects or evaluating hybrid effects are
open-ended tasks [10,[11].

2.2. Representation Learning

In modern deep learning, representation learning refers to the pro-
cess of automatically retrieving meaningful features from raw data
and encoding them in a compact space [25| [26]. By employing
models to extract relevant information and reduce data dimension-
ality, such representations foster structured and interpretable fea-
ture embeddings, which can then be easily manipulated. In addi-
tion, models that learn non-discrete distributions enable coherent
interpolation or random sampling in their latent spaces, generaliz-
ing over unseen variations in the data [27]. In this regard, VAEs
proved particularly effective and have been widely exploited in
neural synthesis, (i) facilitating direct resynthesis from sampled la-
tents [28]], (ii) promoting feature disentanglement across multiple
descriptors in both supervised and unsupervised settings [29, [30]],
or (iii) enabling the concatenation of learned features with dis-
crete labels [31]. With the growing popularity of deep generative
models specialized in high-quality audio content, many studies in-
corporate latent representations as conditioning signals for larger
models, leveraging their capabilities and complexity while grant-
ing flexible control over the generation process. For example, Liu
and Jin [32]] used an encoder to extract class-informed features
for conditioning an RNN in an adversarial framework; similarly,
Huang et al. [33] and Demerlé et al. [34] applied VAE latents
within Latent Diffusion Models, while Rohnke et al. [35] lever-
aged them to condition a Parallel WaveNet. VAEs offer promising
interpolation and clustering characteristics that have yet to be in-
vestigated for conditioning more capable VA modeling networks
to enable continuous morphing among settings and effect types.

3. DATASET

We present pOD-set, a new dataset with 97 hours and 57 minutes
of recordings covering 27 overdrive pedals, with 36 combinations
of parameters for each. Out of the wide range of different overdrive
pedals currently available on the market, we selected a subset of
high-end, boutique pedals (see [Tab. I)) - spanning from renowned
classic circuits to novel, peculiar, and unconventional designs -
which in our experience we believe may be representative of the
broad spectrum of tonal nuances that characterizes modern guitar.

The different parameter settings represent combinations of the
gain and tone knobs, typically found in most overdrive pedals. For
each knob, we recorded six positions, covering their full range in
evenly spaced increments (i.e., 0, 2, 4, 6, 8, and 10 on 10-mark
scales). Additional controls, where present, were set to flat/neutral
positions. Detailed settings are provided with the dataset.

The dataset was generated by processing a single input audio
file through each parameter configuration of each analog pedal.
The main input was a ~6-minute WAV file (48 kHz, 24-bit) from
Yeh et al. [9], containing a diverse range of instrumental sounds.
Moreover, we added three 4-second sinusoidal sweeps (15 Hz to
24 kHz) at different amplitudes (-6, -12, and -24 dBFS), separated
by 400 ms of silence to capture the noise floor of each pedal. On
each pedal, the volume knob was used to match the output level
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Table 1: Analog overdrive pedals in pOD-set.

Label | Brand Model
1 KOT AnalogMan King of Tone
2 HON Bearfoot Honey Bee
3 BEE Beetronix Overhive
4 WES Bogner Wessex MKII
5 BLU Boss BD-2-B50A
6 GLA Cornerstone Gladio
7 SS2 Cornish SS2
8 ELE Dr Scientist The Elements
9 PLU EarthQuaker Devices | Plumes
10 | ocb Fulltone OCDv1.3
11 | zEN Hermida Audio Zendrive
12 | PRE Horizon Devices Precision Drive
13 | TUB Jam Pedals Tube Dreamer
14 | KTR Klon KTR
15 | ACQ Lichtlaerm Audio Acquaria
16 | FEL Lunastone Big Fella
17 | CHI Pettyjohn Chime
18 | LIG Rawkworks Light OD
19 | zo1 SviSound Overzoid
20 | DUM Tanabe Dumkudo
21 | RUM Tone City Big Rumble
22 | JAN Vemuram Jan Ray
23 | SIL Vox Silk Drive
24 | RED Way Huge Red Llamzi5 I
25 | MOF Wampler Mofetta
26 | 385 Walrus Audio 385 MKII
27 | soU Xotic Soul Driven

among different pedals, first manually adjusted to -3dBFS peak
at the loudest setting. Since fine level matching is not feasible
due to the circuit’s nonlinear behavior across different parameters,
we adopted per-class normalization of the recordings so that the
loudest peak for each pedal was precisely -3 dBFS. Normalization
was minimal, with an average amplification of 0.33 £ 0.87 dB.
Complete normalization details for each file are provided with the
dataset.

All dataset samples were recorded using a MOTU M4 audio
interface. The input signal was routed through a Radial ProRMP
passive re-amp box to match the pedals’ input impedance. We
measured and removed the total signal chain latency of 1268 sam-
ples from each file for accurate alignment with the input file. Fi-
nally, since signal phase is per se tonally irrelevant, we inverted the
polarity for phase-inverting circuits to maintain consistency across
the dataset.

3.1. Robotic Parameter Controller

To ensure precise and consistent parameter settings across pedals,
we built a parameter-controller robot inspired by [23]]. The robot is
composed of off-the-shelf, inexpensive components, including two
stepper motors (28BYJ-48), an Arduino “Uno” microcontroller,
and a velcro platform for securing pedals. Each motor controls
the shaft of an individual potentiometer via a toothed belt and two
identical pulleys. To ensure proper tensioning and avoid obstruc-
tions (e.g., additional knobs on the pedal), the motors are mounted

on raised, laser-cut acrylic rails (see[Fig. I).

SModified with additional tone control.

Figure 1: Recording robot with one of the pedals connected.

The 28BYJ-48 stepper motors have a step of 5.625 degrees and
an internal gear reduction with a 1/64 ratio, resulting in a total of
4096 steps per revolution and a step of 0.088°. The Arduino board
handles USB serial commands from a computer, instructing the
robot to move one or both potentiometers to a specific position. A
PureData patch automates the entire recording process, including
playing the input audio file, recording the output, renaming files
based on the current pedal and setting, and sending commands to
the Arduino to adjust the motors for the next position. For each
pedal, the setup took approximately one minute, followed by 3
hours and 40 minutes of data recording. The Arduino code, Pure-
Data recorder patch, and hardware designs are available on the
project’s reposito

4. METHOD

The proposed pipeline is divided into two functional blocks: (i)
a latent extractor and (ii) a processing network (see . The
latent extractor encodes the behavior of each circuit and param-
eter configuration into a highly-compressed representation, i.e., a
conditioning vector. In turn, the processing network is responsible
for generating the output audio signal, given the input audio signal
and the conditioning vector.

4.1. Latent Extractor - VAE

The latent space extractor is a VAE enforced with an adver-
sarial component. The VAE is trained on sinusoidal frequency
sweeps from multiple pedals and parameter configurations. The
model consists of a 1D convolutional encoder g4 and of a quasi-
symmetrical decoder pg. Both are 10 layers deep, with pg incor-
porating a final denoising layer with sinusoidal activation. g4 ex-
tracts an §-dimensional unimodal latent representation z from an
input signal X, such that z = g4 (X) ~ N (u, diag(?); pe then
reconstruct the input X = py(X|z). The training objective is to
maximize the Evidence Lower Bound (ELBO), balancing recon-
struction accuracy and latent space regularization:

L =Eg,@xx) [logpe(X|z)] — Dxe (95(2|X)[[p(z)) (1)
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Figure 2: System architecture, comprising the latent extractor
VAE and the processing network with conditioning.

where the first term is the reconstruction loss, and the sec-
ond one corresponds to the Kullback-Leibler (KL) divergence,
which regularizes the latent space. As for the reconstruction loss,
we adopted a weighted sum of three terms: Mean Squared Er-
ror (MSE), Huber Loss, and Multi-Resolution Short-Time Fourier
Transform (MR-STFT) Loss [36l], capturing both time-domain and
frequency-domain fidelity. The latter is defined as:

Lser = Y (|STFTy(x) — STFT,(3)[1) (@)

weWw

where STF'T,,(x) denotes the Short-Time Fourier Transform
computed at different window sizes w € W. To further improve
reconstruction results, we exploited adversarial training, introduc-
ing a convolutional discriminator D,. During training, we alter-
nate between optimizing D, and the VAE in a minimax game.
In the first stage, Dy, is trained to identify real samples px and
reconstructed ones px using a BCE loss:

L0, = ~Exuny log Dy(X)] — Ex. . [log(1 = Du(X))] ()

In a second training stage, we update the VAE adding to the
term in[Eq. (1)]an adversarial loss weighted by a fixed :

Ladv = fWIEX ~ px [108; Dy (X)] )

The trained latent extractor is used during the training phase
of the processing network to produce conditioning vectors for each
pedal and configuration. It is therefore not needed during inference
with the latter.

4.2. Processing Network - RNN

The processing network is trained on input and output audio for
multiple pedals and configurations, and the relative conditioning
vectors from the latent extractor. We employed three processing
networks relying on the implementation provided by Yeh et al.
[9]. The authors proposed several networks and experimented with
different conditioning mechanisms; out of these, we choose to use
GRU cells combined with two hypernetworks, namely StaticHyper
and DynamicHyper as they represent a good compromise between
efficiency and signal quality. The purpose of such hypernetwork

is to generate weight matrices for the main RNN. For conciseness,
here we briefly summarize the key concepts behind such hypernet-
works while referring the reader to the original paper for detailed
formulations.

The StaticHyper mechanism is the most computationally effi-
cient, as it generates fixed weight matrices W, Wy, and the bias
vector b by passing a conditioning vector c into a Multi-Layer Per-
ceptron (MLP) ¢, which outputs the corresponding projections:

W =¢u(c), Wi=g¢n(c), b=p(c) )
On the other hand, the DynamicHyper mechanism computes
weight matrices at each timestep using a second recurrent network,
which takes as input the concatenation of both ¢ and the previous
hidden state h;_, from the GRU (denoted as ). The produced
transformations dp,, d. and the features zy, z, are then integrated
in the processing GRU itself via element-wise multiplication:

h} = tanh(dy(zn) © W)h]_| + d.(z.) @ Wlz]) (6)

Following the original implementation, the training objective
combines a weighted MR-STFT - [Eq. (2)]- and an MSE loss:

L = ACstrr + Lyvse @)

5. EVALUATION

In this section, we describe the experimental setup and present a
simplified user interface for exploring the network’s latent space.

5.1. Experimental Setup

We conduct a series of experiments with the proposed architecture
and our pOD-set.

Setup 1: we train the latent extractor (VAE) on the full dataset
in an unsupervised manner. The model learns to reconstruct a
chunk of the sine sweeps in the dataset (1200 Hz - 6600 Hz), re-
sampled at 32 kHz to balance efficiency and representation quality.
Each setting is encoded into an 8-dimensional latent vector; pre-
liminary experiments with lower-dimensional spaces resulted in
poor reconstruction performance. We use stratified K-fold cross-
validation (K=5), running for 5000 epochs, with a batch size of
32 and Adam optimizer (initial learning rate 10~3, halved every
500 epochs). After training, we extract the latent vectors for all
samples and store them for visualization.

Setup 2: we select three progressively larger subsets of pedals
prioritizing diversity in timbral characteristics:

¢ 2 pedals: {HON, ZEN}
¢ 4 pedals: {HON, ZEN, FEL, SOU}
¢ 8 pedals: {HON, ZEN, FEL, SOU, KOT, RED, SS2, CHI}

For each subset, we train the latent extractor as in the previous
setup and use the extracted latent as conditioning signals for two
processing networks, namely DynamicHyper-RNN (D-GRU) and
StaticHyper-RNN (S-GRU), comparable in size to the models in
[9]. Finally, we evaluate the system capability in a real-time set-
ting with a smaller variant of the S-GRU, denoted as Real-time
StaticHyper-RNN (RT-S-GRU). For all RNNs, both the input and
processed audio files are segmented into 4096-sample chunks.
Preliminary experiments showed that the network converges quite
quickly without requiring a large amount of data. To optimize
training efficiency, we therefore retain only the first 40% of each
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sample in the dataset and train the model for 3 epochs, with a batch
size of 128 and Adam optimizer with an initial learning rate of
1072 halved every 500 steps. Results from these experiments are
discussed inlSection 6l

5.2. 2D Control GUI
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Figure 3: 2D latent space navigation GUI. The red cursor moves
with the user’s mouse, allowing them to move across the 2D re-
duction of the 8D conditioning space. Different settings for each
pedal are represented by colored dots. The 8 knobs (right) repre-
sent single dimensions of the conditioning vector.

Despite the 8-dimensional latent space enabling smooth mor-
phing across different control configurations and overdrive ef-
fects, such a high-dimensional control space may be arduous to
navigate for users. We propose a 2D graphical user interface
(GUI) (see[Fig. 3) that represents the 8-dimensional conditioning
space through dimensionality reduction with t-distributed stochas-
tic neighbor embedding (t-SNE). Different color points represent
training configurations, and users can navigate the space with the
cursor. A 4-layer MLP is trained to reverse the dimensionality
reduction, predicting an 8-value vector for each point on the 2D
plane. We train the model for 1500 epochs, with a batch size of
32 and Adam optimizer and a fixed learning rate of 102, achiev-
ing validation MSE < 6 x 10™2. Additionally, the 8 conditioning
values are presented on the side for both visualization and control,
compensating for the dimensionality lost in the reduction.

6. RESULTS AND DISCUSSIONS

6.1. Latent Space Extraction

The reconstruction performance of the latent extractor (i.e., VAE)
was measured in terms of MSE and MR-STFT, as mentioned in
The results are shown in the upper part of
Due to the varying characteristics of the circuits, we occasionally
observed slight fluctuations in the reconstruction metrics and the
structure of the latent spaces depending on the subset considered.
While an in-depth analysis of all possible combinations within our
dataset is beyond the scope of this work, the reported metrics still
offer a meaningful assessment of the latent extractor.

Since the VAE is trained in an unsupervised manner and is
fed data with consistent pitch (i.e., processed sine sweeps), the ex-
tracted latent spaces are arranged according to the sole amplitude

and timbral characteristics of each pedal and parameter configu-
ration. The 2D projection of the latent space extracted from the
whole dataset (see [Fig. 4) reveals distinct clusters for pedals with
peculiar sonic traits (e.g., ZOI, BEE, or 385), while pedals with
similar circuit designs (e.g., LIG and KTR, or JAN and GLA) tend
to lie closer or overlap. We consider this as a positive asset of our
approach, as it allows the model to autonomously correlate similar-
ities, facilitating the learning process for the processing networks.
Previous attempts at using supervised learning resulted in satisfac-
tory reconstruction metrics and produced well-separated clusters
of individual pedals, but the too-condensed clusters turned less in-
formative for the RNNs.

This behavior is evident in the 2D reductions of the latent
spaces extracted for the 2, 4, and 8-pedal configurations (see
[Fig-3). All plots show not only a good separation of clusters rel-
ative to different pedals but also a distribution spread across the
whole space. Moreover, further analysis revealed that configura-
tions with similar gain and tone settings were positioned closer to
each other in the latent space.

Pedal
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Figure 4: 2D t-SNE of the 8-dimensional latent space extracted
with the VAE from the entire dataset.
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Figure 5: 2D t-SNE reductions of the latent space for the 2, 4, and
8-pedal configurations.

6.2. Audio Processing

Results of the three processing networks (i.e., D-GRU, S-GRU,
and RT-S-GRU) across the two metrics considered are provided in
Overall, the RNNs proved robust in correctly reconstruct-
ing the processed waveforms and achieved state-of-the-art results.
Despite the increased complexity, the 8-dimensional conditioning
signal proved sufficiently informative to allow the network to ef-
fectively process the input signal while maintaining perceptual co-
herence. In all cases, the 4-pedal configuration yielded the best
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Table 2: Metrics for the latent extractor (VAE) and all the process-
ing networks (D-GRU, S-GRU, RT-S-GRU). The lowest error for
each network is in bold.

Model Params | Pedals | | MSE x10~> | | MR-STFT
2 0.548 0.238

4 0.346 0.168

VAE 5292.396 8 0.531 0.193
27 0.312 0.154

2 0.409 0.429

D-GRU 20,769 4 0.349 0.411
8 0.533 0.642

2 0.61 0.495

S-GRU 57,569 4 0.408 0.439
8 0.569 0.599

2 1.384 1.113

RT-S-GRU | 1,849 4 0.836 0.814
8 2.358 1.469

Table 3: Comparison of processing networks trained on a single
pedal (HON) with existing literature [|9].

IMAE (L1) ¥10~? | MR-STFT
Model Ours Yehetal. | Ours | Yehetal
D-GRU | 0.763 150 | 0.251 0.428
S-GRU | 0.838 1.7 ] 0.329 0.698

results, highlighting this setup as the best compromise between
the meaningfulness of the latent space, complexity, and amount of
data for training. The 2- and 8-pedal configurations exhibit slightly
worse results, with a large spike in the 8-pedal RT-S-GRU, likely
due to its small number of parameters.

To provide a comparison with the original method [9] we
based ours on, we also train the whole pipeline on a single pedal
- HON, for consistency with the other subsets. As presented in
Tab. 3| our latent-conditioned D-GRU and S-GRU outperforms
the original models conditioned on knob configuration. While the
architecture of the S-GRU implies an increase of the number of
parameters (ours 57,569 against the original 30,369), the size of
the D-GRUs are instead comparable (20,769 against 20,289). De-
spite the inclusion of all knob combinations (36 against 25) po-
tentially contribute to the improved performance, the generaliza-
tion capabilities of the RNNs still suggests that latent conditioning
provides a more informative representation than a discrete, knob-
based one. Further experiments on the architecture, possibly in-
cluding the same pedal modeled by the authors (Boss OD-3), may
better support this claim.

6.3. Latent Space Exploration and Hybrid Effects

Beyond the evaluation of individual components of the architec-
ture based on the real effect configurations measures, we are in-
terested in assessing the entire modeling network as a new hy-
brid effect to understand what happens in-between “real” settings.
For these experiments, we employ the 4-pedal configuration, as it
yielded the best results.

First, we sample an §-dimensional conditioning space and per-
form value sweeps on each individual dimension. shows
the effect on an input sinewave cycle of such sweeps along the
first four dimensions of the conditioning vector. Some dimen-
sions appear to be mostly related to the amount of amplification
and compression (e.g., dimension 2), while others affect various
distortion and filtering nuances. However, assigning a clear per-

ceptual/parametric meaning to each individual dimension remains
challenging: this is a problem common to many works on the dis-
covery of new neural effects [24,[11] or hybrid eftects [10].

Figure 6: Effect on a sinewave cycle (gray) of independent value
sweeps along the first four dimensions of the conditioning space
(Values: {-1, -0.5, 0, 0.5, 1}). Phase was inverted for visualization.

The complexity of such evaluation motivates our 2D interface
as the lower dimensionality of control can enable visual under-
standing of the topography of the space. To do so, we retrieved
conditioning vectors for every 2D point in a 100 x 100 grid, used
them for the S-GRU processing a 440Hz sinewave, and finally per-
formed an analysis of the distortion, compression, and filtering
characteristics of each output. Distortion is measured as the To-
tal Harmonic Distortion (THD), compression as the Crest factor
(Eq._(8)| [371), and filtering is assessed through the spectral cen-
troid [38]] of the output signal.

CrestFactor(dBFS) = Peak(dBFS) — RMS(dBFS) (8)

The combination of the 2D interface and the aforementioned
metrics allows us to get a general understanding of the arrange-
ment of tonal characteristics over the latent space.

The THD map left) shows “islands” of high distor-
tion that exist across multiple groups of pedals. Moreover, all the
pedal clusters contain points spanning from higher to lower dis-
tortion areas. Interestingly, the islands with the highest THD do
not contain any real sample, indicating that the combination of the
processing network and 2D-to-8D mapping network may develop
their own extreme behavior that steers from known data. Further
visual analysis of outputs from these areas showed peculiar charac-
teristics, e.g., second harmonics being more pronounced than the
fundamental frequency.

The crest factor center) shows quite different areas for
each pedal. For the ZEN pedal, the crest factor shows the highest
compression, which is consistent with the specific pedal’s known
behavior. Other pedals, e.g., HON, show more varied crest values
for each setting. The two lowest compression areas (light blue)
correspond to the highest THD areas. While the leftmost low com-
pression area seems to originate from a large number of settings
from the FEL pedal, the rightmost area is far from all real settings.
This last area supports the hypothesis of emergent independent be-
haviors of the entire conditioning and processing pipeline, which
develops an overall novel sound effect.

Finally, the spectral centroid map right) shows each
pedal cluster having an overall homogeneous centroid value,
which differs among clusters. This could reflect the different
setting-invariant tonal nature of the various circuits, which can
originate from fixed parts of the respective circuits, such as the in-
put filtering stage. Areas between real configurations are harder to
interpret, but the area with the highest centroid roughly coincides
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Figure 7: Analysis of a) total harmonic distortion; b) crest factor; and c) spectral centroid, across the 2D latent reduction with the 4-pedal

configuration (see[Fig. 3).

with that having the highest THD. The magnitude of the centroid
in this area supports the aforementioned emerging behavior.

This analysis on the 2D interface represents a first step towards
a quantitative analysis of new and hybrid effects found in between
real points of the conditioning space. Furthermore, any of these
maps could be provided underneath the 2D interface to brief users
on the characteristics of the space, bringing back some of the con-
fidence that can be lost with the removal of the direct gain and tone
controls.

7. CONCLUSIONS

In this paper, we presented a method for neural effect modeling
based on compact latent space conditioning, which enables con-
tinuous morphing between effect circuits and settings. Moreover,
we introduced pOD-set, a new dataset of analog overdrive pedal
recordings with 36 combinations of gain and tone parameters. The
proposed modeling network exploited a VAE to construct an 8D la-
tent space encoding timbral characteristics of multiple circuits and
settings. The latent space was then used as conditioning signal for
several hyper-recurrent models, which process audio accordingly.
The 8D latent conditioning outperformed the 2D discrete approach
in single-pedal configurations, while remaining robust across the
2, 4, and 8-pedal settings. We further proposed a 2D interface for
navigating the latent space, leveraging dimensionality reduction
and a MLP to reverse it. The interface proved useful in exploring
and evaluating the networks beyond the accuracy in modeling real
settings, as it allowed us to assess distortion, compression, and fil-
tering characteristics in areas between existing ones. As a result,
we found behaviors that confirmed characteristics of existing ped-
als, as well as emerging behaviors to be attributed to the entire
conditioning and processing pipeline.

Handling multiple pedals simultaneously may lead to a slight
reduction in the processing accuracy; however, such trade-off al-
lows for increased flexibility. Indeed, we argue that our primary
goal is not to perfectly emulate specific configurations, but to bal-
ance realistic behavior with the creation of novel, unconventional
effects. Still, future work will look at optimizing the latent space
to balance complexity and separation.

We strongly encourage creative uses of the dataset in the hope
that it will be useful for the community to explore the tonal char-
acteristics of analog overdrive pedals.
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