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ABSTRACT

Streaming-enabled voice conversion (VC) bears the potential for
many creative applications as an audio effect. This demo paper
details our low-latency, real-time implementation of the recently
proposed Prosody-aware Decoder Voice Conversion (PAD-VC).
Building on this technical foundation, we explore and demonstrate
diverse use cases in creative processing of speech and vocal record-
ings. Enabled by it’s voice cloning capabilities and fine-grained
controllability, RT-PAD-VC can be used as a low-delay, quasi real-
time audio effects processor for gender conversion, timbre and
formant-preserving pitch-shifting, vocal harmonization and cross-
synthesis from musical instruments. The on-site demo setup will
allow participants to interact in a playful way with our technology.

1. INTRODUCTION

Voice conversion (VC) [1, 2] and singing voice conversion (SVC)
aims to convert the voice recording of a speaker or singer (source)
into a synthetic audio with the voice of another person (target)
while preserving the original linguistic content and appropriately
transferring the prosody or melody. Obviously, it is required to
robustly extract those different speech properties from the source
and process them independently for synthesizing the target. Since
the desired information is usually not readily available in the
source recording, it is often a challenge to disentangle these fea-
tures. There are already a number of commercial applications1

that use VC for dubbing of actors’ voices into other languages or
for anonymization of voice messages [3]. Similarly, several on-
line services2 already offer SVC capabilities for music production
purposes. Although VC and SVC are often considered to be sepa-
rate tasks, we will summarize both as VC in the remainder of this
paper. As we will show, the main difference is the higher require-
ments for accurate conversion of the pitch trajectory in case of the
singing voice, since it carries the melody. Nevertheless, both tasks
can be effectively handled by a single VC system, if appropriately
implemented. Although recent VC systems synthesize plausible
speech signals that exhibit high similarity to the target speaker’s
voice, the complexity of the neural pipelines is often prohibitive
for real-time applications like audio effects processors.

1For example: https://elevenlabs.io/
2For example: https://www.kits.ai/
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1.1. Related Work

In general, significant performance improvements have been
achieved in VC through the use of neural architectures and training
paradigms. Early approaches to neural VC were based on AutoVC
[4] or StarGAN [5]. These rely on a learnable disentanglement of
speech features by enforcing information bottlenecks, which are
in turn difficult to tune and can lead to leakage of undesired prop-
erties into the target speech signal. More recent approaches dis-
entangle the speech features more explicitly through pre-trained
feature extractors, either using abstract audio tokens based on self-
supervised representation learning (SSL), or human-interpretable
feature-representations such phoneme-posteriorgrams (PPGs).

For example, FreeVC [6] is a token-based VC system using the
VITS framework. FACodec [7] factorizes speech into multiple at-
tributes, like linguistic content, prosody, timbre and acoustics. One
common theme in those approaches is the need for elaborate data
augmentation strategies used in training to steer the networks away
from undesired information leakage. Moreover, most of these ap-
proaches employ a direct reconstruction of the target time-domain
signal from the sequence of audio tokens, making it hard to inspect
failure cases.

In contrast, interpretable VC methods employ acoustic
models to predict time-frequency representations (often mel-
spectrograms) of the target speech, and use neural vocoders to
synthesize the target time-domain signals. Our recently proposed
Prosody-aware Decoder Voice Conversion (PAD-VC) [8] falls into
this category. It is conceptually closest to the method presented in
[9] whose authors show that a small and interpretable set of pho-
netically relevant speech features is sufficient to synthesize high
quality target speech. PAD-VC also shares similarities with the
approach presented in [10], which uses frame-wise formant esti-
mates and other simple spectral envelope descriptors. The authors
show that hand-crafted, classic audio features are a suitable repre-
sentation for reconstructing intelligible and speech, even without
using PPGs.

Only few works directly target streaming-enabled VC, where
low-latency and real-time applicability are paramount over the
voice conversion quality. As an example, the authors of [11] com-
bine conventional pitch-shifting with neural spectral filtering to
convert singing voices in real-time. Alternatively, [12, 13] com-
bine audio tokens with light-weight differentiable DSP (DDSP).
StreamVC [14] is a recent example of token-based and streaming-
enabled VC, which is reported to deliver competitive conversion
quality at latencies below 100 ms.

1.2. Contribution

The main purpose of this paper is to present creative audio effects
applications of the streaming-enabled variant of PAD-VC, which
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Figure 1: System Overview of PAD-VC and RT-PAD-VC. The main difference is the overlap-add style processing as indicated by the
semi-transparent gray windows beneath the waveforms and mel-spectrogram. Blue: Source speaker utterance, Turquoise: Data streams,
Apricot: Neural modules, Red: Target speaker utterance

we call RT-PAD-VC. We will recap the details of PAD-VC in Sec-
tion 2.1 and describe our quasi real-time implementation in Sec-
tion 2.2. Finally in Section 3, we will lay out expressive and cre-
ative voice manipulations that go beyond traditional audio effects
and are made possible through RT-PAD-VC. We plan on setting
up the demo at the DAFx 2025 venue, so that the participants can
interact with RT-PAD-VC in an explorative and playful way.

2. METHOD

In the following paragraphs, we first describe how PAD-VC works
and subsequently go into the details of the quasi real-time imple-
mentation of RT-PAD-VC.

2.1. Prosody-aware Decoder Voice Conversion

Our recently proposed PAD-VC [8] is a conceptually straightfor-
ward neural VC method that is able to disentangle (i.e., indepen-
dently control) the spoken words or sung lyrics (phonetic con-
tent) from the speaking or singing style (prosodic variation) and
the speaker’s or singer’s identity (voice timbre). This is achieved
by extracting frame-wise, interpretable features from the source
recording and using the decoder to predict the mel-spectrogram
of the target speaker’s speech or singing. We refer to Figure 1 to
provide an overview of the complete processing pipeline. In the
following, we will stick to the color-scheme of blue indicating the
source speaker’s utterance and red to indicate the target speaker’s
identity and utterance.

The speech features we employ can be roughly categorized
into prosodic variation (pitch, energy, voicing confidence), pho-
netic content (PPG) and voice timbre (speaker embedding). Since
they are low-dimensional, they can be understood as a natural in-
formation bottleneck. The acoustic model that acts as a decoder,
trained to reconstruct the ground-truth mel-spectrograms of speech
or singing recordings given their corresponding feature sequences.
With the only exception of the speaker embeddings, all input fea-
tures are either coming from fixed pre-trained models or com-
pletely DSP-based. This helps to minimize information leakage
between the phonetics, prosody and timbre domains.

We extract prosodic variation features in a frame-rate of ap-
prox. 86 Hz from the source recording. They comprise energy
(computed as the L2-norm of mel-spectrogram frames), pitch (f0
in Hertz), and voicing confidence (saliency of the pitch estimate,
estimated via CREPE [15]). Since the average pitch varies among
individuals due to factors like age and gender, we scale the pitch
trajectories to match the statistics of the target speaker. Unlike

other works, we perform this step explicitly instead of relying on
the speaker embeddings to capture the pitch statistics.

We extract PPGs using a variant of Wav2Vec [16] that has been
fine-tuned for recognition of phonemes in American English3. The
rationale behind using PPGs is to have an interpretable mid-level
representation of the spoken words or sung lyrics that is not as
rigid as discrete symbolic phoneme sequences but rather a soft ac-
tivation of phoneme occurrences over time. We illustrate the corre-
spondence between forced-aligned phoneme sequences and PPGs
in Figure 2(a).

The speaker embeddings are different from the other features
as they are not extracted from the source audio, but instead trained
alongside the complete system. We use 64 dimensions to represent
the voice timbre of the target speakers. Thus, PAD-VC does not
have one-shot capabilities in terms of cloning a target voice. How-
ever, we found experimentally that PAD-VC can be fine-tuned with
a new target voice using comparatively little training data (e.g.,
two minutes). Systematic evaluation of this aspect, especially the
attainable synthesis quality versus availability of training data is
subject to future work.

From the predicted mel-spectogram of the target speaker or
singer, we reconstruct the time-domain signal by using StyleMel-
GAN [17] as a neural vocoder. It is pre-trained with diverse speech
corpora and can thus be regarded as universally applicable. We
also found in previous works that StyleMelGAN exhibits some de-
gree of robustness to the so-called oversmoothing effect [18]. Fur-
thermore, we already showed in [19] that it can synthesize pitched
voices outside the range of the training data, making it suitable for
singing voices as well.

2.2. Quasi real-time implementation RT-PAD-VC

Referring to the flow diagram in Figure 1, we want to point out
that the PAD-VC pipeline works similar to an audio effects pro-
cessor. The source recording is provided at the input and trans-
formed into the target voice at the output. Some control parame-
ters allow to change the outcome by switching or adjusting internal
data streams. Firstly, there is the target speaker ID and it’s corre-
sponding speaker embedding that allow to switch between differ-
ent voice timbres at the output. Secondly, there is the possibility
to manipulate the pitch trajectory, allowing subtle to drastic alter-
ations of the output speech signal. Of course it is also possible to
modify energy and voicing confidence, as well as the PPG features

3We refer the reader to https://huggingface.co/vitouphy/
wav2vec2-xls-r-300m-timit-phoneme for details
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(see for example [9]), but such manipulations are out-of-scope for
this article.

In contrast to conventional audio effects, comparatively
compute-intensive modules are involved in our processing chain,
rendering it impractical to process the incoming audio sample-by-
sample or frame-by-frame. Thus, our main approach to enable
real-time processing with PAD-VC is to implement a chunk-wise
overlap-add method that is both applied during feature extraction
as well as during decoding and synthesis. More precisely, the in-
coming audio is processed in chunks that are integer multiples of
the number of audio samples per analysis frame. The overlap on
feature extraction side is realized by having the first frame of the
current chunk identical to the last frame of the previous chunk.
During synthesis, overlap-add is realized by blending linearly be-
tween those overlapping frames. The number of frames in each
chunk can be used to trade-off between the latency of the overall
processing chain and the voice conversion quality.

To illustrate how shorter chunks negatively impact the PPGs,
we depict in Figure 2(a) the correspondence between the force-
aligned phoneme sequence of the utterance "Locksmith" and the
prosody and PPG features, extracted from the complete recording.
To avoid clutter, we only included the phoneme symbols with the
highest activations. The PPG was not trained to detect stress- and
length-marks, instead giving high activations to the space sym-
bol. Figure 2(b) depicts the result of processing the same record-
ing in small chunks (32 frames, overlap region indicated by the
gray vertical bar). While the prosody features stay largely the
same, the PPG exhibits wrong phoneme activations and gaps close
to the chunk borders. This can be explained by the fact that the
Wav2Vec2-based PPG extractor is a sequence-to-sequence trans-
former architecture that will inevitably produce different outcomes
depending on the sequence length and preceding context frames
(the same is true for the decoder, which uses recurrent LSTM and
CBHG blocks). On the contrary, the pitch, energy and voicing
confidence features are extracted per analysis-frame without any
dependency of their temporal context and are mostly not affected.
A good trade-off between quality and latency can be achieved us-
ing a chunk size of 64 frames and an overlap of 1 frame, leading
to an algorithmic delay of 0.75 seconds.
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(a)

(b)

␣ l ʊ ␣ k s ␣ m ɪ s ␣

␣ l ɑ ␣ k s ␣ m ɪ θ ␣

Utterance: „Locksmith“

Figure 2: Illustrative example for the impact of (a) complete vs.
(b) chunk-wise feature extraction, see 2.2 for further explanation.

3. CREATIVE APPLICATIONS

In this section, we will briefly describe the different creative ap-
plications that are possible through our streaming-enabled imple-
mentation of RT-PAD-VC. Two key capabilities of our system are
important here. First, the ability to synthesize singing voice even
when trained only with speech recordings. This can be attributed
to the robust reproduction of desired pitch trajectories. Second,
the possibility to fine-tune the decoder towards previously unseen
target voices using comparatively little training data. From a prac-
tical point of view, we implement a client and server architecture to
enable processing of the compute-intensive tasks on remote hard-
ware, while having a light-weight client on device that takes care
of audio capturing from a microphone input or other audio stream,
sending the audio to the server and playing back or storing the re-
sulting audio into a file. Audio examples for creative applications
of RT-PAD-VC can be found on our accompanying website4.

3.1. Gender conversion

This application is usually demonstrated as a sanity check for any
new VC system. As a specialty of RT-PAD-VC, we can process
the pitch trajectory and the target voice timbre in a completely
decoupled fashion. We can thus gradually morph between the
pitch range of the source and the target. In combination with the
embedding-based modeling of the target timbre, this can be used
to create special effects like an aged voice or a falsetto voice.

3.2. Pitch shifting

If the ID of the source speaker or singer happens to be the same
as the target speaker, we can use PAD-VC as a means to perform
pitch-shifting in a timbre- and formant-preserving manner. Al-
though this use-case my seem kind of far-fetched, it can still be
useful in situations where speech or singing voice recordings are
to be re-edited. From the available audio material, we can fine-tune
RT-PAD-VC to the target voice and then perform fine-granular ed-
its (e.g., intonation correction).

3.3. Vocal harmonization

By running several instances of RT-PAD-VC, we can generate vo-
cal harmonies to singing voice at the input. Alternatively, we can
flatten the pitch trajectory of spoken input and replace it with a
musically meaningful melody, thus creating a choir. Especially in
the real-time context, engaging call-and-response interactions are
possible where the user shouts a short phrase and an ensemble of
synthetic voices repeats it with different pitches.

3.4. Cross-synthesis

RT-PAD-VC also synthesizes interesting results when the input au-
dio is neither speech nor singing voice. When processing record-
ings of monophonic melody instruments, the instrument timbre
will be matched with the most similar phoneme sequence and pro-
duce some output that resembles scat-singing. In case of percus-
sive instruments, RT-PAD-VC will generate click and pop sounds
that occur in speech and are most similar to the percussion. In
case of polyphonic music, rather unexpected and chaotic results
are synthesized.

4https://www.audiolabs-erlangen.de/resources/
NLUI/2025-DAFx-RT-PAD-VC

DAFx.3

https://www.audiolabs-erlangen.de/resources/NLUI/2025-DAFx-RT-PAD-VC
https://www.audiolabs-erlangen.de/resources/NLUI/2025-DAFx-RT-PAD-VC


DAFx25 Demo Paper, Ancona, Italy, 2 - 5 September 2025

4. CONCLUSIONS

We introduced RT-PAD-VC, our approach to streaming-enabled
VC which combines chunk-wise extraction of features capturing
the linguistic content and prosody of the input voice recording
with an overlap-add application of the acoustic model and neural
vocoder. We showed how manipulation of intermediate represen-
tations inside the system can be used to realize interesting audio
effects that allow to alter speech or singing voice with low-latency.
Future work will be directed towards adapting the involved neural
architectures to non-causal processing while increasing the con-
version quality also for the real-time case.
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