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ABSTRACT

Smooth sparse noise sequences are applied to efficiently model
reverberation. This paper addresses the problem of optimizing
sparse noise sequences for perceptual smoothness using gradient-
based methods. We demonstrate that sinc-shaped artifacts intro-
duced by fractional delay create non-convexities in an envelope-
based roughness loss function, hindering delay optimization. By
temporarily removing pulse polarity and omitting envelope rectifi-
cation, we obtain a convex loss suitable for gradient descent. Pulse
signs are reintroduced after optimization during synthesis. Op-
timization results show roughness reduction across various pulse
densities, with the optimized sequences approaching the percep-
tual smoothness of velvet noise.

1. INTRODUCTION

Sparse noise sequences have been widely explored in the litera-
ture, with various pulse distributions proposed to shape their tem-
poral roughness and spectral properties. Examples of sparse noise
sequences include Velvet Noise [1], Dark Velvet Noise [2], To-
tally Random Noise [3], and Additive Random Noise [4]. Velvet
noise is known for its smooth perceptual quality, yet it remains un-
clear whether its pulse distribution achieves optimal smoothness.
Obtaining smoother distributions involves optimizing pulse place-
ments, a task that is computationally challenging due to its combi-
natorial nature.

Optimizing the pulses’ placements is, in essence, equivalent
to designing the positions of non-zero coefficients in sparse FIR
filter design. This problem is typically formulated by representing
the non-zero coefficient positions via an lp-norm and optimizing
it, yielding an inherently nonconvex challenge. Existing methods
involve approximating the lp-norm by an [,-norm [5]], zero co-
efficient positions search algorithms [6l [7], and greedy methods
[I8L19]. Optimizing sparse noise sequences by allowing continuous
values and rounding to the nearest integer has been proposed [10].
However, little research has explored gradient-based or continuous
optimization approaches.

This paper investigates the use of gradient descent for pulse
placement optimization in sparse noise sequences. Fractional de-
lays introduce sinc-shaped impulse responses, where the sinc func-
tion is defined as sinc(x) = sin(nz)/mx. We show that these
sinc-like artifacts from fractional delays are the main source of
non-convexities, which hinder convergence. Using a roughness

Copyright: © 2025 Cristobal Andrade et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution 4.0 International Li-
cense, which permits unrestricted use, distribution, adaptation, and reproduction in

any medium, provided the original author and source are credited.

0.8
0.6
0.4
0.2

0.0 —6—0—6—0—0—0—60—60—60—60—60—0—6—0—0—0—80—0—

0.0 25 5.0 7.5 10.0 125 15.0 17.5 20.0
Sample Number

Figure 1: Blue: Impulse shifted by 10 samples. Yellow: Impulse
shifted by 10.5 samples. Applying a delay that includes a frac-
tional portion results in a sinc-shaped time response.

model based on [1], we expose these issues, modify the loss for-
mulation to enable delay optimization, and finally demonstrate the
resulting perceptual improvements.

The organization of this paper is as follows. Section 2 intro-
duces the fundamentals of fractional delays, describes the noise se-
quences used for optimization, and introduces a roughness-based
loss metric. Section 3 analyzes the convexity of the proposed loss
function and presents the delay optimization results.

2. BACKGROUND

2.1. Fractional Delays

A fractional delay refers to a delay, which is not a multiple of the
sampling interval. The time response of a fractional delay is a
shifted sample sinc function [11]. That is

h(n) = sinc(n — D) (L

where n is the integer sample index and D is the delay decomposed
into an integer and fractional part. Figure[T]shows the impulse re-
sponse of an integer delay of 10 samples and the impulse response
of a delay containing an integer portion of 10 samples and a frac-
tional portion of 0.5 samples.

In Section 3, we show that the sinc-shaped renspose intro-
duced by fractional delays, degrade the convexity of the roughness
loss, which must be addressed to enable gradient-based optimiza-
tion.
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Figure 2: Proposed roughness model based on [1].

2.2. Sparse Noise Sequences

In this section, two sparse noise sequences are introduced: Velvet
Noise and Totally Random Noise. The main difference between
them lies in their pulse distributions, which give rise to different
levels of temporal roughness.

2.2.1. Velvet Noise

Velvet Noise (VN) is synthesized by placing unit-impulses at pseu-
do-random sample positions and assigning each impulse a random
sign. Formally

M

so(n) = 3 a(m)u (n ~ round (%(m + rnd(m)))) o)

m=0 s
where rnd(m) is a uniform random number in [0, 1), a(m)
randomly takes values -1, round(-) rounds to the nearest integer,
T4 is the average impulse interval (inverse of impulse density), and
T is the inverse of the sampling rate.
Velvet Noise was designed to minimize pulse density while
maximizing perceptual smoothness [1], yet whether its pulse dis-
tribution is truly optimal remains an open question.

2.2.2. Totally Random Noise

In Totally Random Noise (TRN), pulses can be placed anywhere
in the sample grid with equal probability [[12]. TRN was originally
proposed to be generated by rounding a scaled, offset uniform ran-
dom sequence to achieve the desired pulse density following

see(n) = round ( TdTi - {T(n) - %D 3)

where Ty denotes the inverse of the impulse density, 7(n) is
a sequence of values uniformly distributed between 0 and 1, and
round() rounds to the nearest integer.

Alternatively, TRN can be synthesized by randomly selecting
impulse positions to meet the target density and assigning each
pulse a random +1 sign. TRN is reported to sound rougher than
Velvet Noise [[12]].

2.3. Roughness Loss Function

The psychoacoustic sensation of roughness arises from quick chan-
ges in modulating frequencies within the range of 15 to 300 Hz
[13]]. This psychoacoustical phenomenon is often associated with
the sound produced when articulating a rolling “r”.

To model the roughness [1] proposes to obtain the envelope
fluctuation by rectifying the noise signal and low-pass filtering it
to match auditory temporal resolution. Then the roughness is com-
puted as the variance-to-mean ratio of the envelope, expressed in
decibels. To ensure fair comparisons across different pulse densi-
ties, we add an energy-normalization step that removes differences
caused purely by signal energy. Figure2]shows a flow diagram of
the proposed model.

—8— \elvet Noise
-35 Totally Random Noise

-50

-55

Roughness (dB)

-60
-65

-70
600 800 1000 1500 3000 7000 20000
Average Impulse Density (1/s)

Figure 3: Roughness values obtained with the proposed model for
Velvet and Totally Random Noise across various pulse densities.
The results demonstrate that the pulse-density distribution influ-
ences the roughness of the noise sequence.

Figure [3] shows the roughness values of Velvet and Totally
Random Noise across various pulse densities, as computed by our
model. These results illustrate the importance of optimizing pulse
placement to minimize roughness at any given impulse density.

3. ROUGHNESS OPTIMIZATION

In this section, we begin by examining the convexity of our pro-
posed loss function and identifying how fractional-delay artifacts
compromise its convexity. We then introduce a modification that
yields a convex loss formulation. Finally, we apply the revised loss
to optimize the roughness of sparse noise sequences, using TRN
as the starting point.

3.1. Loss Function Analysis

To determine whether the roughness measure defines a convex
loss, we synthesize a TRN sequence, select a single pulse, shift it
incrementally between its neighbors, and evaluate the loss at each
position.

Figure [] shows the roguhness obtained by shifting a single
pulse in a TRN sequence of 600 pulses per second, for both inte-
ger and fractional delay shifts. The integer-only shifts produce a
smooth, discrete convex loss curve, whereas the inclusion of frac-
tional delays presents dips leading to a non-convex curve. This be-
havior must be addressed to be able to utilize the proposed rough-
ness model as a loss metric.

The dips observed in Figure ] results from the absolute value
operation used in our model, which rectifies the signal prior to
computing its statistics. A rectified pulse should yield a consistent
mean value regardless of its position. However, due to the sinc-
shaped pulses introduced by fractional delays, this assumption be-
comes invalid, causing undesired fluctuations in the loss function.
Since these sinc artifacts are purely digital and roughness percep-
tion is insensitive to pulse polarity, we can eliminate the sign in-
formation and corresponding absolute-value step during loss eval-
uation and then reassign the original signs when synthesizing the
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Figure 4: Roughness loss function evaluated by shifting a single
pulse of a TRN. The blue curve includes fractional delay shifts,
while the orange curve considers only integer delays. The dips
observed when using fractional delays illustrate the instability of
the delay optimization problem.

final sequence. Figure[5]compares the original loss function, incor-
porating pulse signs and absolute-value rectification, with a mod-
ified loss function that omits rectification by considering signless
pulses. Figure [5] shows that removing pulse signs and excluding
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Figure 5: Roughness loss function evaluated by shifting a single
pulse, including fractional sample shifts. The blue curve includes
both pulse signs and absolute-value rectification. The orange curve
omits pulse signs and rectification, resulting in a convex loss.

the absolute-value operation during analysis results in a convex
loss function. This modified approach is therefore well-suited for
delay optimization.

3.2. Delay Optimization

We begin with a TRN sequence and optimize its pulse positions to
reduce roughness. To ensure the loss function remains convex, we
temporarily ignore the signs of the pulses and omit the rectification

Table 1: Roughness values (in dB) computed using the proposed
model. Results are presented for different pulse densities (1/s),
detailing values for the initial totally random noise, optimized se-
quence. Velvet Noise (VN) is provided as a reference.

Density Init Optimized VN
600 -33.54 -40.14 -43.08
800 -35.73 -43.33 -47.44
1000 -37.28 -46.69 -50.74
1500 -40.80 -51.53 -55.22
3000 -46.53 -58.6 -60.34
7000 -52.46 -62.83 -64.37

step in the roughness model. After optimization, the original pulse
signs are reintroduced during synthesis. Throughout this proce-
dure, the pulse densities remain constant. The optimization is car-
ried out using the open-source Frequency-Domain Differentiable
Audio Processing library, FLAMO [14].

Table [T] compares the roughness of the initial TRN, the re-
sulting optimized sequence, and VN at various densities. Delay
optimization consistently lowers the roughness of the initial TRN
across all densities, bringing it close to the levels achieved by VN.
The audio results from this optimization are available on the sup-
plementary GitHub pagfﬂ including a variant in which optimized
pulse positions are rounded to the nearest integer.

Informal listening confirms that the optimized sequences sound
noticeably smoother than TRN and approach the smoothness of
VN, in agreement with the numerical results in Table 1. Moreover,
rounding the optimized pulse positions has negligible impact on
the perceived roughness, indicating that integer delay implemen-
tations can effectively replicate the optimized results.

4. CONCLUSION

We identified fractional delays as the main obstacle in delay op-
timization and proposed a method to minimize the roughness of
sparse noise sequences. Fractional delays create sinc-shaped ar-
tifacts that distort the envelope used in roughness calculations.
These distortions lead to non-convexities in the loss function, which
hinder gradient-based optimization. By removing the sign of the
pulses and skipping rectification during optimization, we avoid
these artifacts and ensure a convex loss. This is valid since the
envelope is polarity-invariant, and polarity can be reintroduced af-
ter optimization during synthesis.

The proposed method successfully reduces the roughness of
Totally Random Noise for various pulse densities. Informal lis-
tening confirms a perceptual improvement, with the optimized se-
quences approaching the smoothness of velvet noise.
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