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ABSTRACT

This study introduces a novel and interpretable model, DiffVox,
for matching vocal effects in music production. DiffVox, short
for “Differentiable Vocal Fx", integrates parametric equalisation,
dynamic range control, delay, and reverb with efficient differen-
tiable implementations to enable gradient-based optimisation for
parameter estimation. Vocal presets are retrieved from two datasets,
comprising 70 tracks from MedleyDB and 365 tracks from a pri-
vate collection. Analysis of parameter correlations reveals strong
relationships between effects and parameters, such as the high-
pass and low-shelf filters often working together to shape the low
end, and the delay time correlating with the intensity of the de-
layed signals. Principal component analysis reveals connections to
McAdams’ timbre dimensions, where the most crucial component
modulates the perceived spaciousness while the secondary com-
ponents influence spectral brightness. Statistical testing confirms
the non-Gaussian nature of the parameter distribution, highlighting
the complexity of the vocal effects space. These initial findings on
the parameter distributions set the foundation for future research
in vocal effects modelling and automatic mixing.

1. INTRODUCTION

Audio effects are essential in music production. They enable audio
engineers to shape a sound’s timbre and spatial characteristics, such
as stereo width. Understanding how these effects (their settings)
are used in real-world audio is valuable for developing automatic
audio processing tools to create realistic music mixes. Yet, this
knowledge is based on decades of experience and often remains
untracked systematically. Since the distribution of effect parameters
is unknown, we often approximate it with non-informative priors,
such as uniform or Gaussian distributions, to ease downstream
tasks. This is often used for generating synthetic training data for
a classifier model that identifies the applied processing, including
tasks such as effects detection [1], music mixing style transfer sys-
tems [2, 3, 4], or pretraining audio representations [5]. This forms
a biased and weighted training objective, where the effect settings
that are less likely to occur in real-world mixes are overrepresented,
and vice versa, thus cancelling out the prior. The influence of
weighting has been found in filter design using neural networks [6],
where different sampling strategies of the filter coefficients affect
the generalisation results on real-world impulse responses (IRs).
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Unfortunately, due to the complexity of the music production
process, it is challenging to collect real-world data with annota-
tions on the effects parameters. Reverse-engineering the mix is
more feasible. Directly optimising the effects parameters end-to-
end using gradient descent is effective in equaliser matching [7],
fitting IRs with filters [8] or feedback delay networks (FDN) [9],
learning compressor parameters [10], or even capturing the whole
mixing process graph [11]. We thus adopt differentiable sound
matching as a proxy to capture real-world effects configurations.
For simplicity and feasibility, we focus on a single track, mono-
in-stereo-out scenario, independent of broader mix interactions
between tracks. We choose vocals because they are often the most
prominent element in a mix and are carefully processed. The result-
ing parameters can be considered as presets sampled from arbitrary
mixes. The order and routing of the effects are fixed, resulting
in fixed dimensionality, which makes later analysis tractable. We
follow [11] in using static parameters to control the effects, which
is sufficient to represent complete mixes.

Our contributions are as follows: Firstly, we propose an effects
model that reflects professional music production practices while
being efficient to train in a differentiable manner. We incorporate
parallel algorithms running on graphics processing units (GPUs)
to accelerate fitting the recursive filters used in the equaliser and
dynamic range controller. We implement a differentiable ping-pong
delay, an FDN reverb with frequency-dependent attenuation, and
a dynamic range controller with look-ahead. Secondly, we pro-
pose a loss function that matches the signals’ microdynamics in
a multi-resolution fashion, similar to common spectral losses, to
capture the features of interest in different scales. Thirdly, we fit the
effects to hundreds of vocal tracks and analyse the collected presets.
Our analysis reveals the importance of spatial effects for sound
matching, highlights strong correlations of specific parameters, and
demonstrates that the most explainable components of the parame-
ter distributions are related to spaciousness and spectral brightness.
Lastly, we publicise our experiments’ source code and the vocal
presets dataset to foster further research on audio effects prior 1.

2. THE EFFECTS MODEL

Our chosen effects are based on standard practices in music produc-
tion 2. The mono input is first treated with a six-band parametric
equaliser, followed by a compressor and an expander as a dynamic
range controller. Then, the signal is split into two paths: one for
the dry signal and the other for the wet signal. A ping-pong delay
and an FDN reverb process the wet signal. A panner processes

1github.com/SonyResearch/diffvox
2www.soundonsound.com/techniques/vocal-production
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Figure 1: The proposed model (upper left) and individual effects for vocal effects processing.

the dry signal and then mixes it with the wet signal. The exact
routes are shown in Fig. 1. We pick effect implementations with
the fewest parameters possible to reduce the dimensionality so it
does not exceed the number of vocal tracks we collected. We ap-
proximate the effects only when necessary to reduce fitting time.
In the following sections, we describe each effect in detail.

2.1. The Parametric Equaliser (PEQ)

The PEQ sequentially applies the following six filters: two peak
filters (PK1 and PK2), a low-shelf filter (LS), a high-shelf filter
(HS), a low-pass filter (LP), and a high-pass filter (HP). We ref-
erence the T-RackS Classic Equaliser plugin by IK Multimedia3

to set the ranges of the parameters. We follow the Audio EQ
Cookbook4 to implement the filters as Biquad filters since they
are commonly used in digital audio effects. We fix the shelf fil-
ters’ Q factor to 0.707, resulting in four gains, four Q factors, and
six frequencies to be optimised.

Recently, differentiable time-domain evaluation of time-
invariant recursive filters has been made possible by specialised
kernels enabling efficient backpropagation [12]. However, these
kernels do not employ any parallelisation along the time axis, mean-
ing they do not fully utilise parallel processors. Blelloch’s parallel
prefix sum algorithm [13] illustrates that recursive expressions can
be parallelised if the recursion can be expressed in terms of an
associative operation. This reduces time complexity from O(N)
to ≈ O(N

p
), where p is the number of parallel processors. Thus,

we seek to express the Biquad filter recursion using an associative
operation, allowing us to apply the parallel scan algorithm [14].

A Biquad filter consists of five parameters {b0, b1, b2, a1, a2}.
The state-space realisation [15] of a Biquad filter in Direct-Form-
II is:

x̃[n+ 1] = ABQx̃[n] +

[
x[n]
0

]
y[n] = CBQx̃[n] + b0x[n],

(1)

where ABQ =

[
−a1 −a2

1 0

]
and CBQ =

[
b1−b0a1 b2−b0a2

]
.

Noting that the first line of Eq. (1) can be rewritten without re-
cursion:

x̃[n] =

n∑
k=1

An−k
BQ

[
x[k − 1]

0

]
, (2)

3www.ikmultimedia.com/products/trclasseq
4https://www.w3.org/TR/audio-eq-cookbook/

we define an associative binary operation ⊕ acting on tuples
(U1,v1) ⊕ (U2,v2) 7→ (U2U1,U2v1 + v2). By setting
Un = ABQ, vn =

[
x[n− 1] 0

]⊤, and sn = (Un,vn), we
can express the recursion step of our filter associatively:

s̃n = s1 ⊕ s2 ⊕ · · · ⊕ sn =

n⊕
k=1

(
ABQ,

[
x[k − 1]

0

])
, (3)

where s̃
(2)
n , the second entry of the tuple s̃n, gives us x̃[n]. More-

over, if ABQ is diagonalisable, applying ⊕ can be simplified
further, reducing matrix multiplications to scalar multiplications.
If the poles of the filter λ1, λ2 are distinct, ABQ can be diago-
nalised as PΛP−1 and Λ = diag(

[
λ1 λ2

]
). Using the fact that

An
BQ = PΛnP−1 and altering our associative representation such

that vn = P−1
[
x[n− 1] 0

]⊤ and, accordingly, Un = Λ, we
recover our filtered signal x̃[n] = Ps̃

(2)
n .

To ensure distinct poles, we restrict the Q factor of the HP
and LP filters to be no smaller than 0.5. In the case of real poles,
we set P =

[[
1 λ1

−1
]⊤ [

1 λ2
−1

]⊤]. For complex con-
jugate poles (λ1 = λ∗

2), we utilise the coupled form state-space
model [16]. In the coupled form, the transition matrix is a rotation
matrix. Applying the rotation matrix to a two-dimensional vector
is equivalent to complex multiplication where the multiplier is the
pole λ1. In other words, we can run just one complex one-pole
filter instead of two. The rotation and Direct-Form-II transition
matrices are interchangeable by the following equations:

ABQ = P

[
ℜ(λ1) −ℑ(λ1)
ℑ(λ1) ℜ(λ1)

]
P−1, P−1 =

[
0 ℑ(λ1)
−1 ℜ(λ1)

]
.

(4)
Plug Eq. (4) into the first line of Eq. (1), multiply P−1 on both
sides, and convert every vector into a complex number, we get
the following recursion:

x̄[n+ 1] = λ1x̄[n]− ix[n]. (5)

Let vn = −ix[n− 1] and Un = λ1 in the associative operation,

then the filtered signal x̃[n] is P
[
ℜ(s̃(2)n ) ℑ(s̃(2)n )

]⊤
. The com-

putational cost is the same as in Eq. (1), but the implementation is
more straightforward since we can treat it as a one-pole filter.

2.2. The Feed-Forward Compressor and Expander (COMP)

We adopt the compressor and expander model from the DAFx
textbook [17]. The effect is controlled by the following parame-
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ters: the compressor/expander thresholds CT/ET , the compres-
sor/expander ratios CR/ER, the attack/release/RMS smoothing
factors αat/αrt/αrms, and the make-up gain. We use the dif-
ferentiable implementation torchcomp by Yu et al. [18]. The
RMS level detector and the backpropagation of the attack/release
ballistic filter are also one-pole filters; thus, we accelerate them
using the parallel scan.

Due to the causal smoothing effect of the RMS level detector,
the gain reduction signal g[n] is slightly delayed. Modern digital
compressors often have a look-ahead feature to compensate for this
delay. To learn the continuous delay time l ∈ R+, we approximate
the look-ahead by truncated sinc interpolation:

g(n+ l) ≈
L2+1∑

k=−L1

g[n+ k]sinc (k − l) , (6)

where l ∈ [0, L2] and L1, L2 are the truncation lengths. The sinc
function is defined as x 7→ sin(πx)

πx
. The output of the compressor

is then yCOMP[n] = g(n + l)x[n].

2.3. The Ping-Pong Delay (DLY: R → R2)

Ping-Pong delay is a stereo delay effect where the delays alter-
nate between the left and right channels. It is implemented by
two delay lines whose outputs are each other’s inputs. In modern
music production, the panning of the delay is more flexible and not
limited to hard left and right. We thus add two separate panners
to control the panning of two delay lines. We add an LP filter in
the feedback path to simulate the decaying echoes. The LP filter
is the same Biquad filter as in Section 2.1.

We adopt the damped sinusoidal approach to learn the delay
time using frequency-sampling (FS) [19, 20], representing the delay
effects as convolutions with a truncated finite impulse response
(FIR) hDLY[n] with a length of NDLY. The following equations
approximate the transfer functions of the delays:

Hodd(z) =
z−d

1− γDLYHLP(z)z−2d

≈ γ−1
DLY

⌊
NDLY−d

2d

⌋∑
k=1

(
γDLYHLP(z)η

∠z
2π

NDLYz−d
)2k−1

,

(7)

Heven(z) =
γDLYHLP(z)z

−2d

1− γDLYHLP(z)z−2d

≈

⌊
NDLY

2d

⌋
−1∑

k=1

(
γDLYHLP(z)η

∠z
2π

NDLYz−d
)2k

,

(8)

where η ∈ [0, 1] is the surrogate variable, γDLY ∈ [0, 1] is the
decay factor, d is the delay time, and HLP(z) is the transfer function
of the LP filter. η

∠z
2π

NDLYz−d forms a damped sinusoidal in the
frequency domain, a surrogate way to learn the true delay operator
z−d. We set η = 1 during inference, assuming the variable always
converges to one. We explicitly compute each delayed impulse
within the range 0 ≤ n < NDLY to reduce the time aliasing effect
when FS the original transfer function [21].

The two impulses are then joined together as

hDLY[n] = PANodd(hodd[n]) + PANeven(heven[n]) (9)

where PAN : R → R2 is the panning function. Following [20],
we use the straight-through estimator to backpropagate the gra-

dients to the damped sinusoidal. The final output of the ping-
pong delay is the convolution of the input signal with the IR
yDLY[n] = gDLY(yCOMP[n] ∗ hDLY[n]) and gDLY ∈ [0, 1] con-
trols the volume of the delayed signal.

2.4. The Feedback Delay Network Reverb (FDN: R2 → R2)

FDN is an artificial reverberation algorithm that uses a network
of delay lines with feedback to create dense reverberations [22].
In this work, we use a stereo FDN with six delay lines. It is best
described in state-space form as:

x̃1[n+m1]
x̃2[n+m2]

...
x̃6[n+m6]

 = Ax̃[n] +Bx[n],

yFDN[n] = Cx̃[n],

(10)

where A ∈ R6×6, B ∈ R6×2, C ∈ R2×6, and mi are the delay
times. A controls how the energies spread across delay lines. The
delay times are co-primes to increase echo density. We set the delay
times to m = [997, 1153, 1327, 1559, 1801, 2099] proposed in [23].

Computing the recursion of Eq. (10) directly in automatic dif-
ferentiation frameworks is time-consuming due to the overhead of
an enormous amount of function calls to register computational
nodes, and each contributes little computation [12]. Furthermore,
there are no specialised kernels for Eq. (10) (in contrast to the
PEQ in Section 2.1); thus, we use the FS method to approximate
the IR of the FDN. The transfer function HFDN(z) = YFDN(z)

X(z)

is given by the following equation:

HFDN(z) = C
(
D−1

m (z)−A(z)
)−1

B, (11)

Dm(z) = diag
([
z−m1 z−m2 . . . z−m6

])
. (12)

We parametrise A(z) = UΓ(z) where U is an orthogonal matrix
and Γ(z) = diag([γm1(z) . . . γm6(z)]), γ(z) ∈ [0, 1]. We follow
Mezza et al. [9] to parametrise U to be unitary, thus satisfying
the unilosslessness condition [24]. γ(z) is the attenuation filter
that controls the decay rate of the reverb.

In most of the previous works on differentiable FDN [9, 23, 25],
frequency-independent γ is used to parametrise A, which limits
the flexibility of the model. The difficulty is that we usually want
the decay time to be delay-independent, and designing such filters
is non-trivial. Mezza et al. [26] tackle this problem indirectly by
learning separate FIRs for each delay line and training them with
a frequency-dependent objective. Here, we adopt a more straight-
forward approach that aligns with the FS method. We sample 49
points 5 of γ(z) with equal spacing from 0 to π. The attenua-
tion coefficients are then upsampled to the desired length of the
FFT during FS. After fitting, we can approximate the FDN by
calculating the linear-phase filter from the magnitude response of
γmi(z) and then applying Mezza’s model for real-time purposes.
In addition, the decaying time of the reverb in Eq. (11) is frequency-
dependent, while the initial gain of the reverb is not. To correct
this, we add a PEQ after the reverb, which contains two peak filters
and two shelf filters from Section 2.1. In practice, we apply PEQ
on the impulse response of the reverb hFDN[n] before convolving
it with the input signal for efficiency.

5The number was decided empirically based on early experiments by
reducing the number of points until it loses spectrum details.
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2.5. The Effect Sends (SEND) and Parametrisation

Both the reverb (Section 2.4) and the delay (Section 2.3) only model
the wet signal. To further increase the model’s flexibility, we also
send the delayed signal to the reverb to colourise the delays to have
similar acoustic characteristics to the direct signal, controlled by the
send level gSEND ∈ [0, 1]. The total number of parameters in our
effect chain is 1526. Compared to GRAFx [11, 20], a package that
provides differentiable effects modelling, a similar effects signal
chain requires at least 264 more parameters 7, since in GRAFx
the goal is to represent the mix faithfully, thus their delay and
reverbs are over-parametrised to be expressive enough for various
mixing materials. In contrast, our model specialises in vocals, and
we prioritise having a compact representation of parameters for
analysis over expressiveness. Since many effects’ parameter ranges
are bounded, we apply different parametrisation to the parameters,
which are summarised in Table 1.

3. EXPERIMENTS

3.1. Datasets

We apply our effects model to two datasets: 1) the MedleyDB [27,
28] and 2) our private multi-track dataset Internal with paired
dry and wet stems [11]. The latter consists mainly of modern main-
stream Western music. Both datasets are sampled at 44.1 kHz. We
use the official metadata of MedleyDB to pick the vocal tracks.
For Internal, the pairing information between raw tracks and
processed stems is missing. We calculate the cross-correlations
between each song’s dry tracks and wet stems and use these correla-
tions to recover their mapping. We then drop non-vocal stems
based on their filenames.

Stems processed from only one raw track are selected to fit our
problem setting (mono-in-stereo-out). Some input tracks are stereo,
possibly due to the exporting process from the DAW. For these
tracks, we first peak-normalise both channels and then calculate
their difference (side channel). We drop the track if the maximum
side energy exceeds −10 dB. We then take the average of the two
channels to form a mono source. Since the raw tracks and processed
stems are not always aligned in time, we time-align the raw tracks
so their cross-correlation with the processed stems is maximised.

3.2. Optimisation

The loss functions we use are 1) the multi-scale STFT (MSS)
loss, 2) the multi-scale Loudness Dynamic Range (MLDR) loss,
and 3) the regularisation loss on the surrogate variable η. The
MSS loss is defined as

LMSS(ŷ[n], y[n]) =
1

3

∑
N∈{128,512,2048}

∥ŶN −YN∥2
∥YN∥2

+
∥ log(ŶN )− log(YN )∥1

NMN
, (13)

where ŶN and YN are the magnitude spectrograms of the pre-
dicted and ground-truth signals, respectively, computed with FFT
size N and hop size N

4
. MN is the number of frames in the spec-

614 for PEQ, 9 for the compressor and expander, 8 for the delay, 119 for
the FDN reverb, one for the panning, and one for the send level.

7This number is based on replacing our delay and reverbs with theirs.

trogram. Similar to [11], we use auraloss8 to compute the MSS
loss, with A-weighting applied before the STFT [29]. This loss
minimises the distance in the spectral domain.

Inspired by previous work on differentiable microdynamics
metrics [30], we propose the MLDR loss to match the dynamics
of the predicted and ground-truth signals, thus better guiding the
fitting of the compressor. Given a signal x[n], its LDR is defined as

LDR(x[n], tshort, tlong)

= log

 RMS
(
x2[n], tshort

)
RMS

(
x2[n+ ⌊ tlong−tshort

2Ts
⌋], tlong

)
 , (14)

where RMS calculates the energy envelopes of the signal, tshort
and tlong are the integration times in second, and Ts is the sam-
pling period. The longer the integration time, the smoother the
RMS envelope. For more calculation details, please refer to [30].
tlong ≫ tshort, so the LDR describes how the loudness varies lo-
cally in a scale proportional to t−1

long. Similar to MSS loss, we
want to match the LDR from coarse to fine scales. Thus, we
propose the following L1 loss:

LMLDR(ŷ[n], y[n])

=
1

N

∑
t∈{1,2}

N−1∑
n=0

∣∣∣∣LDR
(
ŷ[n],

t

20
, t

)
− LDR

(
y[n],

t

20
, t

)∣∣∣∣
(15)

where N is the length of the signal.
The final loss function is the weighted sum of the MSS and

MLDR losses on the left, right, mid, and side channels, plus the
regularisation loss on η:

L(ŷ[n],y[n]) = 1

2

2∑
i=1

[
LMSS(ŷi[n], yi[n])

+
1

2
LMSS(

√
2H(ŷ[n])i,

√
2H(y[n])i) +

1

2
LMLDR(ŷi[n], yi[n])

+
1

4
LMLDR(H(ŷ[n])i,H(y[n])i)

]
+ (1− η)2, (16)

where H :
[
x y

]⊤ 7→ 1√
2

[
x+ y x− y

]⊤ is the Hadamard
transform that converts left/right to mid/side channels. The last
term encourages the damped sinusoidal to be on the unit circle.
The weights are set empirically to balance the initial magnitude
of the individual losses.

3.3. Fitting Details

We normalise the input and target vocals to have −18 dB LUFS [31]
using pyloudnorm9. Each track is then split into twelve-second
segments with five seconds of overlap. The overlapped region is
used as a warm-up, and the loss is calculated only for the last seven
seconds, similar to [11]. We drop silent segments and select up
to 35 segments in each training step to form a batch. We train
the effects on each track for 2k steps using the Adam optimiser
with 0.01 learning rate and pick the checkpoint with the lowest
loss. We use the CUDA implementation of parallel scan by Martin
et al. [32]. The fitting time of each track ranges from 20 to 40
minutes on a single RTX 3090 GPU.

8github.com/csteinmetz1/auraloss
9github.com/csteinmetz1/pyloudnorm
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Table 1: The parametrisation of the effects. tri(X) is the upper triangular part of the matrix X. For details on the bounds, please refer to our
code repository.

Condition (P) Parametrisation (R → P) Parameters (θ ∈ R)

x ∈ R θ 7→ θ Equaliser’s/make-up gain, CT,ET,B,C
0 ≤ x ≤ 1 σ : θ 7→ 1

1+e−θ Panning, αrms, αat, αrt, ER, γDLY, gDLY, gSEND

a ≤ x ≤ b θ 7→ a+ σ(θ)(b− a) Equaliser’s Q and frequency, CR, d, γ(z)
0 ≤ x ≤ a θ 7→ |θ| mod a l
x ≤ 0 θ 7→ − log(1 + eθ) log(η)

X⊤X = I Θ 7→ etri(Θ)−tri(Θ)⊤ U

The PK and LS/HS filters in the PEQ are initialised with zero
gains. The PK filters’ cut-off frequencies are bounded differently, so
their parameters are ordered and not permutation-invariant. The cut-
off frequencies for LP and HP filters are initialised to 17.5 kHz and
200Hz, respectively. The dynamic range controls are initialised
with CR = 2, ER = 1

2
, CT = −18, ET = −48, and make-up

gain 0 dB. We initialise the delay with γDLY = gDLY = 0.1 and
delay time to 400ms. We initialise the FDN with B = 1,C =
0, γ(z) ∼ U(0.4, 0.6). The send level is initialised to 0.01. The
model is initialised very close to an identity function, which is the
upper bound for the loss, so we can easily detect problematic runs.
We set the impulse response length to four seconds for the delay and
12 seconds for the FDN reverb. We bound the damping factor γ(z)
to have a maximum of nine seconds T60 time to reduce the aliasing
effect, but still be long enough to capture most of the reverb tail.

A few tracks have non-linear effects, such as distortion and
modulations, that are not modelled in our effects. To exclude them,
we drop fitting runs that 1) have a minimum loss above a certain
threshold, 2) have a loss that fluctuates heavily during fitting, or 3)
have a loss that is not decreasing. The thresholds are set empirically
after checking runs with apparent outlier fitting losses. Out of 76
tracks from MedleyDB, 6 tracks are excluded (≈ 8%); out of 370
tracks from Internal, 5 tracks are excluded (≈ 1.3%).

4. RESULTS AND DISCUSSIONS

4.1. Sound Matching Performance

We fit different configurations to test the benefits of having spatial
effects. We denote the complete model as DiffVox. The evaluation
metrics are the fitting losses on the left/right and mid/side channels.
The averaged scores across tracks are shown in Table 2.

Table 2: Matching performance with different configurations.

Dataset Configuration MSS ↓ MLDR ↓
l/r m/s l/r m/s

Internal
No processing 1.44 2.39 1.82 2.08

DiffVox 0.76 0.94 0.34 0.41

⊤ w/o Approx. 0.78 0.95 0.38 0.44

MedleyDB

No processing 1.27 2.16 1.00 1.35

DiffVox 0.75 0.98 0.39 0.45

⊤ w/o Approx. 0.77 1.00 0.42 0.48
w/o FDN 0.79 1.14 0.48 0.62
w/o DLY 0.76 0.99 0.40 0.47
w/o DLY&FDN 0.61 0.90 0.82 1.17

From Table 2, we can see that with just PEQ and compressor,
the rendered audio matches well regarding spectral content, as
indicated by the MSS on MedleyDB. However, it fails to match
the microdynamics indicated by the MLDR loss. Adding the delay
or the FDN improves the matching of the microdynamics. DiffVox
achieves the best matching performance in MLDR and a lower
MSS than with just Delay or FDN, proving its ability to match
the sound in spectral and dynamic aspects. After removing the
approximation, the performance drops slightly, which is expected
since we swap truncated FIRs of reverb and delay with infinite IRs
during inference, allowing the longer tails in the IRs to introduce a
mismatch. Nevertheless, it is still better than without FDN.

4.2. Parameter Correlation Analysis

We analyse the correlation between the parameters in both datasets.
Specifically, on the minimum set of parameters to reproduce the
effects θ ∈ R130, which excludes the surrogate variable η and the
lower triangular part of the logits of U. Since the parameters are
unlikely to be normally distributed, we compute their Spearman
correlation coefficient (SCC) instead of regular correlations10. We
exclude the correlations of multi-dimensional parameters γ(z), B,
C, U since interpreting them is not straightforward. We observe
high correlations between the sampled γ(z), suggesting that the
attenuation coefficients can be decomposed into fewer parameters.

The following discussions are based on the top ten most corre-
lated pairs of parameters. MedleyDB’s most correlated pairs are
not aligned with Internal, showing that the two datasets have
different characteristics. Since MedleyDB has less data compared
to Internal (70 vs. 365 tracks), the correlation we see is also
less reliable. Thus, we primarily focus on the Internal dataset.

High correlations are observed between the delay effect param-
eters. The negative correlations between the delay time and the
feedback gain (-.58) and the delay gain (-.51) imply that when a
longer delay time is used, the delay effects diminish. The positive
correlation between the feedback gain and the cut-off frequency of
the delay’s LP filter (.49) indicates that when a darker delay is used,
it also fades out faster, and vice versa. In addition, high correla-
tions are observed between the gain and the Q factor of the PEQ’s
PK2 filter (-.60) and the gain and cut-off frequency of the FDN’s
PK2 filter (-.46). The counter-interaction between the compressor
threshold and the make-up gain is also observed (-.55), which is
expected, as the two parameters are usually adjusted together to
ensure consistency in loudness before and after the compressor.

10For convenience, the analysis is performed on the parameter logits
before the parametrisation. This does not affect SCC for most of the scalar
parameters (excludes U and l) since their parametrisation in Table 1 is
monotonic.
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We see that the attenuation coefficients above 19.7 kHz are
highly correlated (ranging from .53 to .60) with the LP filter cut-off
frequency. The reverb tends to compensate for the high-frequency
loss by reducing the decay rate because we set the maximum cut-off
frequency to 18 kHz according to the T-RackS EQ. A possible solu-
tion is to set a higher bound for the cut-off frequency or incorporate
a wet/dry mix ratio on LP similar to GRAFx [20].

To analyse the correlation from a broader perspective, we mea-
sure the correlations between individual effects in the effects model
on Internal. We define the effect-wise correlation as the aver-
age of the absolute SCCs between the parameters of the two effects.
For correlations within the same effect, the diagonal elements are
excluded. We see that most of the effects have high autocorrelation,
except for the PEQ’s LS filter (.011). The LS filter has a high
correlation with the HP filter (.198). The LS filter only has two
parameters: gain and frequency. A low correlation means that the
two parameters operate nearly independently. This implies the two
filters are used collaboratively to shape the low end. Based on the
correlations, the hierarchical clustering using Ward’s method [33]
reveals three main clusters: all the spatial effects, the HP and LS
filters, and the remaining effects. These clusters could be used to
inform a simpler design of vocal effects.

4.3. Principal Component Analysis

Inspired by a similar dataset work [34], we perform principal com-
ponent analysis (PCA) [35] on the parameters’ logits to analyse
the distribution of the parameters. Although PCA is limited to lin-
ear relationships, its simplicity and interpretability make it a good
starting point for understanding the effects prior. Given the sample
covariance matrix Σθ ∈ R130×130 of the logits θ, we compute the
eigenvalues λθ ∈ Rr and the eigenvectors Vθ ∈ R130×r such that

Σθ = Vθdiag(
[
λθ1 λθ2 . . . λθr

]
)V⊤

θ ,

λθ1 ≥ λθ2 ≥ . . . ≥ λθr > 0.
(17)

Vθ is an orthogonal matrix, and the eigenvectors are the principal
components (PCs) of the parameters. The eigenvalues represent the
variance of the parameters in the direction of the PCs. r is the rank
of Σθ and equals the number of non-zero eigenvalues.

The cumulative percentage of total variance (CPV, [35]) is a
simple method for evaluating the PCA model’s capacity. The CPV
given p number of components to retain is defined as 100

∑p
i=1 λθi

/
∑r

i=1 λθi . The CPV of both models is shown in Fig. 2. Inter-
nal has more variance explained by the first p components than
MedleyDB, indicated by the larger area under the curve (AUC
= 91.0% vs 88.5%). In other words, the parameters in In-
ternal are more densely distributed than MedleyDB. To see
how MedleyDB is explained by the Internal’s PCA model,
we also compute another CPV by replacing the eigenvalues with
the sum of squared projections of MedleyDB’s parameters onto
each Internal’s PC11 and plot it in Fig. 2. It shows that ≈
65% of the variances in MedleyDB can be captured by Inter-
nal’s first ten PCs, and the CPV trends are similar, but for higher
PCs, the discrepancy increases.

One application of having a PCA model is using it as a genera-
tive model, drawing samples from the distribution N (0, diag(λθ)).
To test this assumption, we perform two multivariate normality tests,
Royston’s [36] and Henze-Zirkler’s [37] tests, on the PC weights

11The PCA projection is defined as x 7→ V⊤
θ (x− µθ) where µθ is the

sample mean of the parameters.

Figure 2: Cumulative total variance as a function of the percentage
of retained PCs (100p/r) from both PCA models.

of Internal. The p-values of the tests are nearly zero given the
first 75 PCs (≈ 99% of the total variance), indicating that the logits
are unlikely to be drawn from a multivariate normal distribution.

We plot the frequency responses of the PEQ, the delay, the
tone correction PEQ, and the reverb decay time in Fig. 3. The
mean parameters (first column) show a reasonable configuration
that we could expect for a professionally processed vocal. Both
the high and low ends are boosted, and the mid-range close to
1 kHz is slightly attenuated with narrow Q. An adequate amount of
delay and reverb is added, with the high frequencies in the reverb
attenuated. The reverb’s decay time is around 2 seconds, starting at
low frequencies and gradually decreasing to zero. The compression
ratio is set to 3.5:1, with a threshold of −22 dB and a make-up gain
of 2.4 dB. The vocals are polished and professionally processed.

To see how the PCs affect the parameters, we add the ith PC
to µθ with scales in {3, 1,−1,−3} ×

√
λθi

. The first PC (second
column) mainly affects the spaciousness of the acoustic property
where the vocals are placed. The feedback gain and overall volume
of the delay are increased. The decay time of the reverb is also sig-
nificantly increased, especially in frequencies above 4 kHz, which
creates a very shimmery and spacious sound. The second PC (third
column) creates a band-pass effect similar to that of a telephone,
which can be seen from the drastic changes in the HS and LP filters.
This aligns with McAdams’ timbre space [38], where their second
dimension is related to the spectral centroid. Long reverberations
also smooth the attack time, which is related to McAdams’ first
dimension. The dynamic range compression gets slightly heavier
in the fourth PC but does not change much in the first three.

5. CONCLUSIONS

This paper presents an expressive differentiable model for vocal
effects processing and a method for capturing the effects parameters
from professional mixes. Spatial effects are crucial for achieving
good matching performance, as indicated by lower microdynam-
ics losses. The parameter correlation analysis reveals meaningful
relationships between effect parameters, such as the interaction
between delay time and feedback gain and between compressor
threshold and make-up gain. The first two principal components of
the PCA model on our private dataset reveal primary directions that
alter the vocals, including control of spaciousness and frequency
bandwidth manipulation (telephone-like effects), which have some
connections to McAdams’ timbre space.
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Figure 3: The mean (column one) and the first four principal components (column two to five with their percentage of explained variance)
of the Internal dataset. The first and third rows show the frequency response of the PEQ and the tone correction filter. The second
row shows the frequency response of the delayed signals, with colour intensity proportional to the delay time. The fourth row shows the
frequency-dependent decay of the FDN reverb.

While our approach successfully captures effect parameters for
most tracks, limitations remain in handling vocals with other effects
we did not model or heavy automation. Addressing these limits and
extending the model to multi-track scenarios is left for future work.
The non-normality of the parameter distribution suggests that a
more sophisticated generative model is needed to capture the actual
distribution. We release the dataset of 435 vocal preset parameter
logits produced in this study, plus a test set of 20 additional presets
from the Internal dataset. The dataset is accompanied by the
DiffVox model implemented in PyTorch, scripts to reproduce the
results on the MedleyDB dataset, and the PCA models. We hope
these resources can advance the development of future automatic
mixing tools or neural audio effect models.
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