Proceedings of the 28" International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

SIMPLIFYING ANTIDERIVATIVE ANTIALIASING WITH LOOKUP TABLE
INTEGRATION

Leonardo Gabrielli

Dept. of Information Engineering
Universita Politecnica delle Marche
Ancona, IT
l.gabrielli@staff.univpm.it

ABSTRACT

Antiderivative Antialiasing (ADAA), has become a pivotal method
for reducing aliasing when dealing with nonlinear function at au-
dio rate. However, its implementation requires analytical computa-
tion of the antiderivative of the nonlinear function, which in prac-
tical cases can be challenging without a symbolic solver. More-
over, when the nonlinear function is given by measurements it
must be approximated to get a symbolic description. In this pa-
per, we propose a simple approach to ADAA for practical applica-
tions that employs numerical integration of lookup tables (LUTs)
to approximate the antiderivative. This method eliminates the need
for closed-form solutions, streamlining the ADAA implementation
process in industrial applications. We analyze the trade-offs of this
approach, highlighting its computational efficiency and ease of im-
plementation while discussing the potential impact of numerical
integration errors on aliasing performance. Experiments are con-
ducted with static nonlinearities (tanh, a simple wavefolder and
the Buchla 259 wavefolding circuit) and a stateful nonlinear sys-
tem (the diode clipper).

1. INTRODUCTION

Traditionally, reducing aliasing in nonlinear digital circuits was
done by means of oversampling, which has a toll on the compu-
tational cost and only improves linearly with the increase of the
oversampling order. Antiderivative Antialiasing (ADAA) was in-
troduced by Parker et al. in 2016 [1] as a novel means to deal
with aliasing without recurring to oversampling, or to be used in
conjunction with mild oversampling.

The original ADAA method involves converting a discrete-
time input signal into a continuous-time representation using linear
interpolation. The nonlinear function is then applied to this contin-
uous signal. To prevent aliasing, the output is low-pass filtered by
applying a rectangular or triangular continuous-time kernel before
resampling to obtain the discrete-time output. This process effec-
tively reduces aliasing at a lower cost with respect to oversampling,
and in principle it can be extended to different filter kernels. In [2],
the ADAA technique has been extended to IIR kernels and, stem-
ming from this work, the technique has been adapted to wavetable
synthesis in [3]], also proving that the Differentiated Polynomial
Waveform (DPW) [4] technique can be seen as a special case of
ADAA apt to the generation of classical synthesizer waveforms.

Copyright: © 2025 Leonardo Gabrielli et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution 4.0 International Li-
cense, which permits unrestricted use, distribution, adaptation, and reproduction in

any medium, provided the original author and source are credited.

Stefano Squartini

Dept. of Information Engineering
Universita Politecnica delle Marche
Ancona, IT
s.squartini@staff.univpm.it

The ADAA technique has been also adopted for stateful sys-
tems [, 6] and wave-digital filters [7], improving the range of ap-
plications in audio processing and circuit simulation.

An early paper from Bilbao et al. [8]], showed that a numeri-
cal framework akin to those used in finite difference time-domain
simulations allows to obtain the same solution as in [[1] and extend
it to higher orders using finite-difference operators. The approach
makes it simpler to obtain the numerical expression to update the
system output for arbitrary order. However, a notable challenge
remains: the computation of the antiderivative of the nonlinear
function requires symbolic calculus, which can be cumbersome
without appropriate tools.

To address this, we propose a simplified approach to ADAA
that utilizes trivial numerical integration and lookup tables (LUTs)
to approximate the antiderivative. By digging into the literature
it seems that this approach, although simple, was only previously
hinted in [8], where the use of LUTs was mentioned in the experi-
mental section as a workaround to computing the antiderivatives.

In this paper, the approach is extensively explored to assess
its validity in aliasing reduction. The method eliminates the need
for closed-form solutions, streamlining the ADAA implementa-
tion process and broadening its accessibility to applications where
symbolic computation is impractical. We analyze the trade-offs of
this approach, highlighting its computational efficiency and ease of
implementation while discussing the potential impact of numerical
integration errors on aliasing performance. Experimental results
demonstrate the feasibility with memoryless and stateful systems,
providing valuable insights for practitioners seeking a viable and
efficient antialiasing solution.

The remainder of the paper is organized as follows. Section 2]
presents the proposed solution, detailing the background of ADAA,
the challenges of analytical integration, and the introduction of the
LUT-based method. Section [3] describes the experimental setup
and evaluates the aliasing reduction performance, LUT size trade-
offs, applicability to stateful nonlinearities, and computational effi-
ciency. Section[d]summarizes the conclusions and discusses future
research directions.

2. PROPOSED SOLUTION

2.1. Background

The ADAA method introduced in [1]] consists of three main steps
to compute the output of a nonlinear waveshaping system with re-
duced aliasing. The first one consists in approximating the conver-
sion from discrete-time to continuous-time using piecewise linear
interpolation between the discrete-time input values x[n]:

DAFx.1

https://dafx25.dii.univpm.it/
mailto:l.gabrielli@staff.univpm.it
https://dafx25.dii.univpm.it/
mailto:s.squartini@staff.univpm.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Proceedings of the 28" International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

z1 + 7(x0 — 1), 0<t<1,

z2 + 7(x1 — 2), 1<t<2,
z(t) = 1. (1

Tn + T(Tno1 —xn), (n—1)<t<n.

Then, a nonlinear function f(¢) is virtually applied in the con-
tinuous-time domain obtaining y(¢t) = f(&(¢)). To return to the
discrete-time domain, one is left with applying an antialiasing filter
and computing the value of the output at the discrete intervals n.
The output is, thus,

yln] = §(t) le=nt)

where g(n) is obtained as the convolution between y(t) and a
lowpass filter kernel, which in [1] is chosen as a rectangular ker-
nel hreet(t), which can be thought as the simplest lowpass filter
choice. Their convolution leads to

i) = [haw)y(n) du 3
= [vt —wyau @)
= / f(@(n —) du)

which ultimately leads to the result

y[n} _ FO(xn) _FO(mn—l). (6)

Tn — Tn-—1

which can be computed at the original audio rate, given that the
antiderivative Fo(z) = fab f(x)dx is known at least in a plausible
input range [a, b] for the application at hand.

The only caveat to this method is the possibility of the denom-
inator to get to zero or close to zero. In such a case, the output can
be computed as

yl = (T, ™

Extension of the method to higher orders of the kernel can be
computed. For example, using a triangular kernel (resulting in the
convolution of two rectangular kernels), the output is computed as

Tn(Fo(@n) — Fo(zn-1)) = (F1(2n) — Fi(Tn-1))

yln] = @n —2m1)? +
Tn—2(Fo(xn-2) — Fo(zn-1)) — (F1(zn-2) — Fi(n-1))
(Tn—2 — Tn-1)?
(8)

where Fi(z) = [Fo(z)da.

It must be noted that the first step (Eq. [I) results in a rough
approximation of the continuous-time signal, which can impair the
result. Therefore, as shown in [2], adopting a very steep lowpass
antialiasing filter in the third step may not improve effectively the
aliasing reduction performance.

2.2. Issues with ADAA

The described ADAA framework has several benefits with respect
to oversampling: it uses lower phase delay filters, which can be
an advantage when the nonlinearity is in a feedback loop; it has
a better performance for the same computational cost. However,
each time a new nonlinear function must be implemented, its an-
tiderivative must be calculated analytically. Applying the method
at scale may require longer development times than oversampling,
which is more suitable to an object-oriented language and allow
code reuse. Furthermore, the method cannot be employed when
a nonlinearity has no closed-form expression, as is the case when
a nonlinearity is extracted from data measurements or drawn by a
user.

Furthermore, some analytical expressions are not easy to inte-
grate manually, they may be piecewise (thus, multiple expressions
must be calculated for the entire domain).

Finally, the Fy(x) often has an increased computational cost
with respect to f(x). As an example, let us consider the following
expression, which is typical of a number of problems in analog
electronics

Vout[n] = a(tanh(Vin[n]/B)). ©)

To reduce the effect of aliasing, the nonlinearity can be treated
using the ADAA method. The antiderivative is

Fo(z) = aBlog(cosh(z/B)). (10)

This exhibits two transcendental functions in place of a single one.
Furthermore, if the antialiasing performance must be improved,
the second antiderivative must be employed, which is

Fi(z) = %(Lig(—e_h)—x(a:—&—?log(e_h+1)—2log(cosh(az)))),
1D
with Liy (z) being the polylogarithm function. This expression
is definitely hard to derive manually and expensive to compute in
real-time. In such a case, in typical engineering applications, some
workarounds can be found, such as approximating the tanh with
a similar function (with a simpler antiderivative), or using numer-
ical approximations, such as the Lambert W [9]. However, the
proposed method largely simplifies the entire problem.

2.3. Proposed Method

The solution we propose, from now on referred to as ADAA-LUT,
is simple, yet flexible. It consists in the numerical integration of
f(z) and in storing the obtained values in a LUT. This way, Fj, ()
is precomputed over a finely sampled range.

In detail, we propose sampling the function f(z) at a finite
number of points K, equally spaced by Az to get f . This can
be either obtained by physical measurement (e.g. of a circuit) or
by direct computation of a closed-form expression at a number of
meaningful input values. Suppose that a function is sampled using
K points in the range [a, b], leading to a LUT f. From this LUT,
numerical integration can be performed according to the following,
to obtain the first antiderivative:

K
Fo(k)=p+_ fla+kAz) - Az, (12)
k=0

where the scalar p is the integration constant. In general, this can
be suitably chosen, e.g. to get Fo(z = 0) = 0, however, it is

DAFx.2

Proceedings of the 28" International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

1 0.8 & 3
% /
0.5 0.6 \ |
Y i
Y '
0 0.4 3y |
4
05 0.2 Y :’i
% #
%
1 0 \../’
1 0 1 1 0 1
(a) (b)
%10
2 L 4
—_ l [7
<l
5]
0 |- 4
1 I I |
-1 05 0 0.5 1

(©)

Figure 1: Input-output relationship of the hyperbolic tangent with
a = 1,8 = 0.3 (a), its antiderivatives (b) and numerical error (c).
The error in (c) is the difference between the symbolic antideriva-
tive (plot (b), solid gray line) and the numerical antiderivatide (plot
(b), dotten black line).

canceled out when used in Eq. (€) or Eq. (8), therefore its choice is
not highly relevant and will not be discussed further. By applying
again the numerical integration we can also derive the LUT Fy for
the second antiderivative to be used in Eq. ().

The LUT of the antiderivative can be now employed to com-
pute Eq. (6), using any form of interpolated read, the simplest one
being linear interpolation, i.e.

Fo(zn) = Fo(i) + d(Fo(i + 1) — Fo(i)) (13)

with the reading index being ¢ = |(K/2 - z,) + K/2] and the
fractional part being d = (K/2 - z,) + K/2 — i.

More advanced forms of interpolation can be used as well,
such as cubic spline interpolation, which provides a smoother esti-
mate by considering N surrounding points. In this case, the LUT
value is obtained as

N—1
Fo(wn) =Y Sj(wn)Eoli+j — N/2) (14)

Jj=

where S;(x,) are the cubic basis functions that depend on the
fractional position d.

One advantage of the approach is that it eliminates the need
for symbolic computation, simplifying the implementation and al-
lowing for faster implementation of several nonlinear functions,
since the algorithm stays the same. It is easy to implement this
efficiently in, e.g. C++ code, by reading the LUT from a file and
thus allowing code reuse. The computational efficiency is also ex-
tremely improved, since no transcendental function must be com-
puted. Linear interpolation is fast to compute, while other im-
proved interpolation methods may be slower, but still quite easy to
handle and sufficiently fast for real-time applications.

Another advantage of this method is that it does not require
closed-form nonlinear function but can employ any memoryless
input-output relationship obtained from physical measurements.

3. EXPERIMENTS

To show the feasibility of the approach we conducted numerical
experiments in Matlab (Fs = 44100 Hz). Four use cases were
considered:

« the static saturating tanh nonlinearity of Eq. (9),
* a static piecewise asymmetrical wavefolding nonlinearity,

¢ amodel of the Buchla 259 wavefolder, as described in [10],
with a heavy distortion

* adiode clipper [11]], which is a nonlinear circuit with mem-
ory.
Details about these nonlinear systems follow. The saturating non-
linearity (Eq. [0) has been sampled using values o = 1,8 = 0.3,
resulting in the shape of Figure[Tfa).
The wavefolding nonlinear function is the following

21 —x T >T,
f(z)=1=z —-T<z<T, (15)
21 —x x < -—T,

with 7 = 0.7. Since the function is odd, in all our experiments,
a bias term b = 0.1 is added to the signal before the nonlinear
function to allow even harmonics at the output.

The Buchla 259 wavefolder has been implemented according
to Eqns. (13-18) from [10], therefore it does not account for the
aliasing reduction techniques proposed in the cited paper, leaving
alias reduction to the ADAA method proposed in our paper.

The diode clipper has been often taken as a use case in virtual
analog research and has been studied in [11]. In our implementa-
tion we take the implementation proposed in [9], with the nonlin-
ear function being the exact Wright Omega function (i.e. none of
the approximations proposed in the cited paper are considered).

The first experiments have been conducted on the static non-
linearities to study the antialiasing properties of the ADAA-LUT
method compared to the original analytic ADAA method (from
now on referred to as ADAA-ORIG). The size of the LUT has
been varied to show its impact on the aliasing by measuring the
signal to noise ratio (SNR). Among these tests, the Buchla 259
circuit stands out for its extremely nonlinear characteristic, which
has been taken as a testbench to validate the proposed method un-
der heavy aliasing conditions. For this reason, a third order ADAA
method will also be employed with this circuit.

Finally, tests on the diode clipper circuit show that, as ex-
pected, the method is also suitable to stateful nonlinear systems.

Computational load has been tested with a C++ implementa-
tion of the ADAA-ORIG and ADAA-LUT method to assess the
computational cost of the different solutions.

Please note that although some of the nonlinearities employed
in these tests are antisymmetric, we did not exploit this property to
halve the LUT size, in order to keep the discussion general.

3.1. Aliasing reduction performance

As done in previous works, the aliasing reduction performance of
the algorithms is highlighted by spectrogram plots showing the

DAFx.3

Proceedings of the 28" International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

output of the system with a swept sine input. The spectrograms
are shown in Figure [2| and compare the trivial method (i.e. sim-
ple evaluation of the tanh or the wavefolder nonlinear function at
sampling rate), with the ADAA-ORIG and ADAA-LUT. Specif-
ically, two variations of the ADAA-LUT method are shown, one
with K = 8192, one with K = 1024. All spectrograms exhibit
aliasing to some extent, with the trivial methods obviously show-
ing it more severely. From visual inspection, all the ADAA meth-
ods look exactly the same, hinting at the fact that they will sound
identical to the human ear.

To investigate further this issue, we repeated these experiments
with a fixed frequency sine, and measured the SNR at the output
of the nonlinearity. As an example, Figure [3] shows spectra from
several experiments. The fundamental and the higher harmonics
are indexed. All the remaining components, i.e. the aliasing, are
treated as noise. The SNR is computed excluding the harmonics
and the DC component.

As can be seen, there is no noticeable difference between the
ADAA-ORIG, ADAA-LUT 8192 and ADAA-LUT 1024. This is
reflected in the SNR which is almost identical between all these
methods. The ADAA-LUT 128 case exhibits some noise, coming
from the quantization of the LUT. However, this is lower than the
aliasing components, and is kept below -100dB which makes it
unnoticeable.

From these tests we can conclude that, as long as the first order
ADAA method is employed, all options are almost identical, with
only the smaller LUT (K = 128) exhibiting some quantization
noise.

3.2. Higher-order ADAA and Interpolation

In order to push the limits of the method we employed the 3rd or-
der ADAA method from [8] (see Eq. (16) from the paper). The
recursion is easy to implement, while the computation of the third-
order antiderivative can be carried out numerically as proposed
earlier. This makes it effortless to compute complex nonlinear
effect processors such as the Buchla 259 wavefolder. In our ex-
periments, we computed the input-output LUT by sweeping lin-
early an input voltage from -10V to 10V. The obtained nonlinear
function has been integrated numerically three times to compute
the antialiased output (with integration constant p = 0). An input
sine wave with range -8V:8V and bias 2V has been employed to
drive the system. The resulting output has been studied for the triv-
ial case, the first-order ADAA method and the third-order ADAA
method using 8192 LUT points and linear interpolation. Addition-
ally, a 5-point cubic spline interpolation has been tested with the
third-order ADAA. Results are shown in Figure[d] As can be seen,
aliasing components are reduced by a large amount by increasing
the ADAA order. However, the quantization error due to linear in-
terpolation grows. This can be reduced by introducing the cubic
spline method, that reduces the noise floor and leaves the harmon-
ics unaffected. Please note that despite the significant improve-
ment in perceived quality, the SNR value does not decrease sub-
stantially because a few high-amplitude spurious components re-
main. These dominant residuals continue to limit the overall SNR,
making the effect of the reduction on this metric relatively small.

3.3. Discussion on LUT size

The tests show that the proposed method is suitable to replace the
original ADAA method without any loss of quality, except when

the LUT is considerably small or the ADAA order is high. In such
cases, the quantization noise may become noticeable, which can
be overcome by using advanced interpolation methods or larger
LUTs.

In most cases, LUT size will not be a issue (except under se-
vere hardware constraints). Indeed, the algorithms discussed in
this field are most probably implemented on laptop computers,
mobile devices or embedded digital signal processors. The lat-
ter is the most challenging case, since computational and memory
resources are more limited than the previous two.

Within embedded digital signal processors, memory buses cre-
ate bottlenecks, therefore any data that is repeatedly accessed at
random positions should be allocated in arrays as close as possi-
ble to the main processing unit. However, such low-level cache
memories are limited and must be used efficiently. For example a
current ADSP-SC592 signal processoﬂ has only 640KB L1 cache
memory. However, even the largest LUT considered in our tests
takes slightly more than 1% of the available cache size, while the
smaller ones are takes a negligible space in the L1 cache.

If memory is critical, a small LUT can be employed, at the
expense of a higher computational cost required to implement a
higher complexity interpolation method.

3.4. Stateful nonlinearities

The ADAA method has been successfully employed with stateful
nonlinear systems, therefore it is sound to expect that the ADAA-
LUT method will perform similarly. For the sake of completeness,
we verified that the proposed method does not alter the behavior of
a stateful system such as a diode clipper. Figure [5]shows spectro-
grams of the diode clipper output with a swept sine input. The triv-
ial approach consists in computing the exact solution of the diode
characteristic using the Lambert W function as done in [9]]. This
solution exhibits aliasing. The ADAA method can be fruitfully
employed by either computing the antiderivative in closed form
or in numerical form, with identical results. Figure E] shows the
behavior of the output in the time domain. Some portions of the
swept sine are highlighted. The ADAA method shows some slight
differences from the non-antialiased method at high frequency due
to the filtering involved in the continuous-time domain. However,
there is no noticeable difference between the two ADAA imple-
mentations. Indeed the error between the two is of the order of
10~ or lower.

3.5. Computational Cost

Assessing the computational cost of the ADAA-LUT with respect
to the original ADAA method is not trivial, since transcendental
functions in modern C libraries are usually implemented using
several approximation methods based on the input value and the
floating point precision. These may include linear, Pade and Tay-
lor approximations, lookup tables and more. On the other hand,
the proposed approach requires a handful of operations, based on
the interpolation method. For this reason, we conducted an exper-
imental test to benchmark by implementing the two methods in C,
to provide a hint of the computational savings.

The benchmarks involved computing the ADAA output using
the antiderivative of Eq. [I0] and comparing it to the ADAA out-
put obtained using the ADAA-LUT method, with a precomputed

Uhttps://www.analog.com/en/products/adsp-sc592.html

DAFx.4

Proceedings of the 28" International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

lookup table of 8192 points. Tests were conducted on an Intel-
based laptop (13th Gen Core i7-1360P) using a single-threaded ap-
plication, with calculations performed in double-precision floating-
point arithmetic. We used the GNU C/C++ math. hE] mathemat-
ical libraries available with the GNU compiler (gcc/g++) version
11.4.0 available with Ubuntu 22.04. We compiled a simple C ap-
plication running from commandline with no graphical frontend
using either no compiler optimization (flag —~00) and maximum
optimization (flag -03). The application processes a batch of
44,100 samples for each test, with either methods. We repeated
this test 20 times and averaged the elapsed times obtained from
the application to get a stable estimate of the execution time. The
Linux kernel system timer was CLOCK_MONOTONIC.

Optimization | ADAA | ADAA-LUT
-00 571 ps 227 us
-03 495 us 162 us

Table 1: Benchmark results for analytical AADA vs AADA-LUT
with different compiler optimization.

Results are shown in Table[I] The AADA-LUT method sig-
nificantly reduced computation time by 60.8% reduction in time
compared to the analytical method without optimization. With
maximum optimization, the gain increases to 67%, meaning that
the optimizer was able to improve the ADAA-LUT algorithm bet-
ter than the analytic ADAA method.

4. CONCLUSIONS

In this paper, we proposed a novel approach to Antiderivative An-
tialiasing (ADAA) that employs numerical integration of lookup
tables (LUTs) to approximate the antiderivative, effectively elim-
inating the need for closed-form solutions. This method, referred
to as ADAA-LUT, significantly simplifies the implementation pro-
cess, making it more accessible for practical applications, partic-
ularly in industrial and embedded systems where computational
efficiency is a priority. By removing the need for analytical in-
tegration it paves the way for faster time-to-market in industrial
applications.

Through extensive numerical experiments, we demonstrated
that the ADAA-LUT method achieves aliasing reduction perfor-
mance identical to the original analytical ADAA method while
offering significant computational savings. Specifically, the pro-
posed method reduced computation time by up to 67% in our bench-
marks, making it a viable alternative for real-time digital signal
processing applications. The use of LUTs enables flexible and
scalable implementation, supporting arbitrary nonlinear functions,
including those derived from empirical measurements, thus broad-
ening the scope of ADAA applications.

Our results also highlighted the trade-offs associated with LUT
size. While large LUTSs (e.g., 8192 or 1024 points) provided results
indistinguishable from the analytical approach, smaller LUTSs in-
troduced minor quantization noise, which can be mitigated with
higher-order interpolation techniques. Additionally, LUT size can
be reduced by leveraging symmetries in the nonlinear function.
However, given the relatively low memory footprint of even the
largest LUTS, this trade-off is unlikely to pose a significant limita-
tion in modern processing environments.

Zhttps://www.gnu.org/software/libc/manual/html_node/Mathematics.html

We also pushed the method further by testing it on a highly
nonlinear function, the Buchla 259 wavefolding circuit, which in-
troduces stronger aliasing. We employed a third order ADAA-
LUT method with 5-point cubic spline interpolation to reduce nu-
merical errors and, hence, the noise floor.

Finally, we showed the applicability of the ADAA-LUT method
to stateful nonlinearities, such as the diode clipping circuit, con-
firming that the method preserves the advantages of ADAA with-
out introducing unintended artifacts.

5. REFERENCES

[1] Julian D Parker, Vadim Zavalishin, and Efflam Le Bivic,
“Reducing the aliasing of nonlinear waveshaping using
continuous-time convolution,” in Proc. Int. Conf. Digital
Audio Effects (DAFx-16), Brno, Czech Republic, 2016, pp.
137-144.

[2] Pier Paolo La Pastina, Stefano D’Angelo, and Leonardo
Gabrielli, “Arbitrary-order IIR antiderivative antialiasing,”
in 2021 24th International Conference on Digital Audio Ef-
fects (DAFx). IEEE, 2021, pp. 9-16.

[3] Leonardo Gabrielli, Stefano D’Angelo, Pier Paolo
La Pastina, and Stefano Squartini, “Antiderivative an-
tialiasing for arbitrary waveform generation,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing,
vol. 30, pp. 2743-2753, 2022.

[4] Vesa Valimaki, Juhan Nam, Julius O Smith, and Jonathan S
Abel, “Alias-suppressed oscillators based on differenti-
ated polynomial waveforms,” IEEE Transactions on audio,
speech, and language processing, vol. 18, no. 4, pp. 786—
798, 2009.

[5] Pier Paolo La Pastina and S D’Angelo, “Antiderivative an-
tialiasing with frequency compensation for stateful systems,”
in Proc. Int. Conf. Digital Audio Effects, 2022, pp. 40-47.

[6] Martin Holters, “Antiderivative antialiasing for stateful sys-
tems,” Applied Sciences, vol. 10, no. 1, pp. 20, 2019.

[7] Davide Albertini, Alberto Bernardini, Augusto Sarti, et al.,
“Antiderivative antialiasing techniques in nonlinear wave
digital structures,” in Journal of the Audio Engineering So-
ciety, 2021, vol. 69, pp. 448-464.

[8] Stefan Bilbao, Fabian Esqueda, Julian D Parker, and Vesa
Vilimiki, “Antiderivative antialiasing for memoryless non-
linearities,” IEEE Signal Processing Letters, vol. 24, no. 7,
pp. 1049-1053, 2017.

[9] Stefano D’Angelo, Leonardo Gabrielli, Luca Turchet, et al.,
“Fast approximation of the Lambert W function for virtual
analog modelling.,” in Proceedings of Digital Audio Effects
Conference. Birmingham City University, 2019, pp. 238-
244,

[10] Fabidn Esqueda, Henri Pontynen, Vesa Vilimiki, and Ju-
lian D Parker, “Virtual analog Buchla 259 wavefolder,” in
International Conference on Digital Audio Effects. Univer-
sity of Edinburgh, 2017, pp. 192-199.

[11] D.T. Yeh, J. Abel, and J. O. Smith, “Simulation of the diode
limiter in guitar distortion circuits by numerical solution of
ordinary differential equations,” in Proceedings of the In-
ternational Conference on Digital Audio Effects, 2007, pp.
197-204.

DAFx.5

Proceedings of the 28™ International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

tanh wave folder
:
20 20
~ ~
1_5115 \5115
> >
210 210
[} [
=} >
g 5 g 5
L [Ty
0 L L 0 L L L I I L
02 04 06 08 1 12 14 16 18 02 04 06 08 1 12 14 16 18
Time (s) Time (s)
(a) trivial (b) trivial
:
20 20 /
N ~
L5 L5 /
3 > L
2 10 2 10 7
[} [}
=} >
g 5 g 5
(TR (TR
0 : : : : : : : 0 ‘ ‘ ‘ ‘ ‘ ‘ . ‘
02 04 06 08 1 12 14 16 18 02 04 06 08 1 12 14 16 18
Time (s) Time (s)
(c) 1st order ADAA - analytic (d) 1st order ADAA - analytic
20 20 /N
~ ~N
T 15 L 15 /
3 > Z
c 10 2 10
[} [}
=} >
g 5 g 5
L (TR
0 : : : : : : s 0 ‘ ‘ : y . f Y .
02 04 06 08 1 12 14 16 18 02 04 06 08 1 12 14 16 18
Time (s) Time (s)

(e) Ist order ADAA - 8192-points LUT, linear interpolation

N
o

[y
ol

Frequency (kHz)
o 6

o

N
o

=
[$2)

Frequency (kHz)
o 5

o

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18
Time (s)

(g) Ist order ADAA - 1024-points LUT, linear interpolation

(f) Lst order ADAA - 8192-points LUT, linear interpolation

L L L L L L L L

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time (s)

(h) 1st order ADAA - 1024-points LUT, linear interpolation

Figure 2: Spectrograms showing the output of the discussed nonlinearities using a swept sine input. Cases (a), (c), (e), (g): trivial tanh, 1st
order AADA (analytic), 1st order AADA (8192- and 1024-points LUT with linear interpolation). Cases (b), (d), (), (h): trivial wavefolder,
1st order AADA wavefolder (analytic), 1st order AADA wavefolder (8192- and 1024-points LUT with linear interpolation). The minimum
spectrogram threshold is -90dB.

DAFx.6

Proceedings of the 28™ International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

0 F sl ‘
A @
2 4 H
= 10
g 2] |
@
=
o
a
|
A ‘ \ L b ML
0 5 10 15 20
Frequency (kHz)
(a) 1st order ADAA - analytic (SNR: 29.39 dB)
0 £ 31 :
A j
:]
= 10
g . Ely
@
3
o
a
o |
Al ‘ \ L \ L AN
0 5 10 15 20
Frequency (kHz)
(b) 1st order ADAA - 8192-points LUT (SNR: 29.39 dB)
0 £ ol :
A i
:]
= 10
e o]
9]
2
o
a
A ‘h LG I b b LT
0 5 10 15 20
Frequency (kHz)
(c) st order ADAA - 1024-points LUT (SNR: 29.39dB)
0 F 1 ‘
:
G 8T E Y
— 10
g ., 10
@
=
o
a
-100
0 5 10 15 20

Frequency (kHz)

(d) Ist order ADAA - 128-points LUT (SNR: 29.36 dB)

Figure 3: Spectra showing the aliasing components (highlighted in
orange) for a sine input at 2093 Hz (C7 of a piano) with amplitude
3 and bias 0.5, being processed by the tanh nonlinear function.
The SNR for each case is shown. The fundamental is denoted as
"F’, while the harmonics below F /2 are denoted by their number.
For reference: SNR for the trivial method is 23.64 dB.

Power (dB)

0 5 10 15 20
Frequency (kHz)

(a) Trivial (SNR: 0.14dB)

0 2l M ‘ ‘
8
8) o]]
g 50
£
-100 m I
0 5 10 15 20
Frequency (kHz)
(b) 1st order ADAA - 8192-points LUT (SNR: 6.94 dB)
0 ’;“ T T T T
g
g]
g, 50 E
§

-100

Frequency (kHz)

(c) 3rd order ADAA - linear interpolation - 8192-points LUT (SNR:
8.95dB)

&
S

10

LT

Power (dB)

_100V'
ATRATR}

0 5

ANl 'h
1 15 20

0
Frequency (kHz)

(d) 3rd order ADAA - spline interpolation - 8192-points LUT (SNR:
8.96dB)

Figure 4: Buchla 259 wavefolder: spectra showing the aliasing
components (highlighted in orange) for a sine input at 2093 Hz (C7
of a piano) with amplitude 8V and bias 0.1V. The fundamental is
denoted as "F’, while the harmonics below Fy/2 are denoted by
their number.

DAFx.7

Proceedings of the 28" International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

N
o
T
I

=
o
T
I

Frequency (kHz)
o S

0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8
Time (s)

o

(a)

Frequency (kHz)

Time (s)

(b)

N
o

=
(&)

Frequency (kHz)
o 6

o

Time (s)

©

Figure 5: Spectrogram showing the output of the diode-clipper cir-
cuit using a swept sine input. Case (a) shows the exact Lambert W
solution with no attempt at aliasing reduction. Case (b) shows the
simulation using the AADA-ORIG method. Case (c) shows the
simulation using the ADAA-LUT method. The minimum spectro-
gram threshold is -90dB.

o

1 1
/_\—/—\/-\) 0
1

0 500 1000
samples

0 10 20 30
samples

(a) Exact solution (grey) vs. ADAA-LUT (black).

1 1
0 w 0
-1 -1
0 500 1000 0 10 20 30
samples samples

(b) ADAA-LUT (grey) vs. ADAA-ORIG (black).

error
o

5 I I I I I I I I
0 1 2 3 4 5 6 7 8 9

samples %104

(c) Error between ADAA-LUT and ADAA-ORIG along the full sweep.

Figure 6: Details from the time-domain signals of Figure [5| On
the left, the beginning of the log sweep is shown, on the right a
portion of signal around 4 kHz.

DAFx.8

	1 Introduction
	2 Proposed Solution
	2.1 Background
	2.2 Issues with ADAA
	2.3 Proposed Method

	3 Experiments
	3.1 Aliasing reduction performance
	3.2 Higher-order ADAA and Interpolation
	3.3 Discussion on LUT size
	3.4 Stateful nonlinearities
	3.5 Computational Cost

	4 Conclusions
	5 References

