Proceedings of the 28" International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

AUDIO PROCESSOR PARAMETERS: ESTIMATING DISTRIBUTIONS INSTEAD OF
DETERMINISTIC VALUES

Céme Peladeau™ ¥, Dominique Fourer” and Geoffroy Peeters

#

LTCI, Télécom-Paris, Institut Polytechnique de Paris, Palaiseau, France
® IBISC, Univ. Evry Paris Saclay, Evry-Courcouronnes, France
come.peladeaultelecom-paris.fr

ABSTRACT

Audio effects and sound synthesizers are widely used processors
in popular music. Their parameters control the quality of the
output sound. Multiple combinations of parameters can lead to
the same sound. While recent approaches have been proposed
to estimate these parameters given only the output sound, those
are deterministic, i.e. they only estimate a single solution among
the many possible parameter configurations. In this work, we
propose to model the parameters as probability distributions instead
of deterministic values. To learn the distributions, we optimize
two objectives: (1) we minimize the reconstruction error between
the ground truth output sound and the one generated using the
estimated parameters, as is itusually done, but also (2) we maximize
the parameter diversity, using entropy. We evaluate our approach
through two numerical audio experiments to show its effectiveness.
These results show how our approach effectively outputs multiple
combinations of parameters to match one sound.

1. INTRODUCTION

Audio processors play a central part in music production [1]. They
fall into two categories: synthesizers, which generate sounds, and
audio effects, which process an existing sound. For both, param-
eters allow to control the resulting output sound. Learning to use
these processors thus comes down to learn how to parametrize them
adequately.

Popular music is mainly transmitted through recordings, which
involve audio processors. Their analysis is therefore of great inter-
est not only in itself, but also towards a broader understanding of
musical practices [2].

Audio effects and sound synthesizers are in most cases hard to
use and usually require a long learning process. Therefore a set of
research aims at helping users to perform audio processors related
tasks, whether it is matching a sound with a synthesizer [3, 4, 5, 6],
automatic mixing [7, 8], mastering [9], reverse-engineering a mix
[10, 11] or production style transfer [12, 13].

As noted in recent research [14], the various parameters do not
have the same influence on the output. Moreover, it is common
that multiple different parameters combinations result in approxi-
mately the same sound—increasing the amplitude of low frequen-
cies is similar to attenuating high frequencies, up to a level factor.
However, to the best of our knowledge, this has never been studied.

* This research was supported by the French ANR project AQUA-RIUS
(ANR-22-CE23-022).
Copyright: © 2025 Come Peladeau et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

275

In this paper, we propose a probabilistic framework for the
inference of the parameters of audio processors. Rather than esti-
mating deterministic values, we propose to estimate distributions
of parameters. These distributions are optimized following two
objectives: (1) sampled parameters should reconstruct accurately
the target sound and (2) they should be diverse. As a proof of
concept, we apply our framework to the blind estimation of audio
effects [15, 16] and synthesizer sound matching [3]. Our method
allows to sample multiple parameters, all resulting in similar output
sounds. We share the code used to perform the experiments'.

1.1. Paper organization

We list works on estimation of processor parameters using neural
networks in Section 2. We then present our approach in Section 3.
This approach is evaluated in two experiments: estimation of audio
effects parameters (Sec. 4) and estimation of synthesizer parameters
(Sec. 5). For the first experiment, we report both some quantitative
results (Sec. 4.7.1) and an analysis of the output distribution of
our model (Sec. 4.7.2). For the second experiment, we also report
quantitative results (Sec. 5.6.1) and a qualitative analysis of the
optimized model (Sec. 5.6.2).

2. RELATED WORKS

In the following we denote by x an unprocessed audio signal, by
y the output signal obtained with audio processors parameters v,
and by V the estimated parameters (see also Fig. 1). Estimating v
with neural network can be done in two ways.

2.1. Parameter-based approach

The classical approach is based on supervised learning where we
synthesize examples y using its known parameters v and we train a
neural network to reconstruct them by minimizing parameter loss
L(v,¥) (for instance the mean square error). Esling er al. [17]
proposed an approach first relying on a audio variational autoen-
coder (VAE) with normalizing flows (NFs) and then designing a
mapping between the VAE latent space and the synthesizer param-
eters using a dataset of synthesized sounds. Following Esling’s
work, Le Vaillant [6, 18, 19] took this approach further by improv-
ing the reconstruction quality and ensuring that the interpolation
between two presets is perceptually smooth.

The same can be done with audio effects with a model trained
to estimate the parameters [15], but then the training also requires
a set of unprocessed audio signals which are processed during
training with known parameters.

lgithub .com/peladeaucome/DAFx_Params_Distrib

https://www.telecom-paris.fr/en/research/labs/information-processing-ltci
https://www.ibisc.univ-evry.fr/en/
mailto:come.peladeau@telecom-paris.fr
http://creativecommons.org/licenses/by/4.0/
https://github.com/peladeaucome/DAFx_Params_Distrib

Proceedings of the 28" International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

2.2. Differentiable digital signal processing

Differentiable digital signal processing (DDSP) is a term coined
by Engel et al. [3] designating the use of explicit signal pro-
cessing blocks in deep learning frameworks in order to incorpo-
rate domain knowledge directly into the models. It was origi-
nally used in a monophonic synthesizer using a harmonic plus
noise model [3]. Various common sound synthesis methods have
then been implemented, including additive/substractive synthesis
[5, 20], frequency modulation (FM) synthesis [4], waveshaping
[21] and wavetable [22]. DDSP enables to train models such that
the output of the DDSP module y matches the target audio y (rather
than matching the ground truth parameters). Thus, it allows to use
datasets without ground truth parameters.

The most popular audio effects have also been implemented as
differentiable units. They are usually called differentiable digital
audio effects (DDAFx). They include equalization [23, 24, 25],
dynamic range compression [12, 26, 27], reverberation [28, 29,
30], phaser [31], non-linear distortion [32, 33].

These DDAFx can be used to estimate audio effects in two
ways: non-blind or blind.

Non-blind estimation is the case when we have access to both
the input x and output signals of the effects y = frx(x, v), but not
to the effects chain fpx nor its parameters v. Approaches based
on DDAFx work in the following way [10, 11]: we design a dif-
ferentiable effects chain fppsp and we optimize its parameters z to
minimize an audio loss ¢ between y andy = fopse(%,2): £(y,¥).
Note that we distinguish z from ¥ since they don’t necessarily have
the same number of dimensions (frx and fppsp may have a different
implementation), as noted in [16]. Since fppsp is differentiable, z
can be optimized using a gradient descent algorithm.

Blind estimation is when we have access only to the output
y = fex(x,V), even though we may use the input x when de-
signing the approach, for instance during training. In this case,
direct optimization of the audio effects parameters is thus impossi-
ble. Blind approaches need to optimize a model which “learns” the
distribution of unprocessed signals x. It can then estimate which
effects have been applied to obtain the processed signal y, which
ultimately relies on an estimation of what the unprocessed version
is. They are usually based on neural networks optimized in a su-
pervised fashion to minimize the distance between the estimated
and the ground truth parameters £(v,¥) [15]. In our previous
work [16], we proposed an approach where the ground truth pa-
rameters are no longer needed. It relies on DDAFx and optimizes
an audio loss L(y,y). This approach is depicted in Fig. 1.

3. INFERENCE OF PROCESSOR PARAMETERS

InFig. 1, we illustrate our framework previously proposed in [16] to
optimize a deterministic model for estimating processor parameters
with DDSP. We consider an unprocessed audio signal x € R",
with N being the signal length in samples. It is processed by
several audio effects or sound synthesizers parametrized by v €
R® . This produces a processed audio sample y € RY. Previous
approaches [3, 4, 16] focus on optimizing a deterministic model
which, given the processed audio signal y, estimates parameters
z = fo(y) € R? of a differentiable processor (DDSP) that allow
to map the unprocessed signal x to y such as § = fopsp(X, z).

If the processor is a pure synthesizer, then there is no unpro-
cessed audio signal, i.e. x = 0, and the processor creates a signal
from it.

276

Data generation process

#

Audio Neural *_) "

iz . z

Processors|! DDSP>y
09,y)

Figure 1: Optimization of a deterministic model to estimate audio
processor parameters with DDSP.

Inference model

Base distrib. sampling

e

- Hlzr|y]+ (9, y)
entropy

Normalizing

reconstruction

Figure 2: The proposed inference model and its loss function.

In this paper, instead of estimating z, we estimate a distribution
po(z|y) parametrized by 0. We aim to optimize this model to out-
put diverse z parameters that allow to match y. The new proposed
approach is shown in Fig. 2.

3.1. Formalization

We assume that the true posterior probability of a processor’s pa-
rameter vector p(z|x,y) can be related to a metric £ which mea-
sures how two sounds y and y are similar. ¥ is obtained by
processing x with a differentiable processor fppsp. We define our
posterior as the following Boltzmann-Gibbs distribution, as it is
usual:

p(zlx,y) = a-exp (£ (fobse(x;2),y)), (D

with a € R being a real-valued normalization constant defined as
1/a = [, exp (—L(fopse(x;2),y)) dz. We have:

2
3

Inp(z|x,y) = Ina — £ (foose(x;2),¥) ,
=Ina— E(}A’7y)
We want to find a parametric distribution py (z|y) that is similar

to the posterior p(z|x,y). To this end, we minimize the Kullback-
Leibler divergence between them:

D = Dxuw (po(zly)llp(z[x,y)) ,)
=]EZNpg(Z‘Y) [1np9 (Z|Y) - 1np(z|x, y)]) (5)
= —Hp, [Z|y] + IEZNM(Zly) [_ Ina+ é(i’? Y)L (6)

with Hy,, [z|y] = E,p, (2|y) [— Inpe(z]y)] being the conditional
differential entropy of the parameters z following the parametric
distribution py. The constants a can be ignored as they are inde-
pendent from 6.

As proposed by Higgins et al. [34], we define a new loss
function for our optimization problem by introducing a weighting

Proceedings of the 28" International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

coefficient S to the entropy term:

E(x,y,@) = _ﬁHPS [Z|Y] + EZNZ)G(Z\)’) [E(}Aﬂy)}. (N

This allows us to balance the trade-off between estimation accuracy
and the regularization of the distribution’s width: the greater the
entropy, the more “diverse” the output parameter sets are.

3.2. Distribution modeling

We model py using a d-dimensional Gaussian distribution modified
with normalizing flows (NFs) [35] (see Fig. 2), d being the number
of DDSP parameters. The encoder outputs both the mean p € R?
and the coefficients o € R? of the diagonal covariance matrix
3 = oI, as in [36]. Samples from this Gaussian distribution are
then fed into a normalizing flow, which allows to transform the
simple Gaussian distribution into arbitrarily complex ones. Our
NF uses T layers f:, such as fxp = fro fr—1o...f1. Tisa
hyperparameter defining the expressive power of our distribution
model. We therefore introduce:

zo ~ po(zoly), ®)
z2 zr, ©)]
vVt € [1;T],Zt = ft(ztfl). (10)

A sample 7 is drawn from a base distribution pg(zo|y) and then
passed through the NF to get z7. We can compute the probability
of zr with the change of variable theorem [35]:

an

with In |det Jp (z0ly)| = Zthl In (|det Jy, (ze—1ly)|) being
the absolute value of the determinant of the Jacobian matrix of fxr
evaluated at zo. The conditional entropy of z is then:

Inpe(2r|y) = —In|det Jpy (20ly)| + Inpo(zoly),

Hyp, [z|y] = Hp, [zo]y] +Ezo~po(20ly) [In |det J sy (zo)] . (12)
Using this, Eq. (7) can then be rewritten as:
L(x,y,0) = — BHp, [zo|y]

— BEag~po(2oly) [In|det T (zoly)|]
+ EZTNP&(ZT\y) [‘e(yia }')}

(13)

The total entropy is the sum of two parts: the entropy of the
Gaussian and the entropy added by the normalizing flow. We
estimate the expectation terms with the Monte-Carlo method using
only one sample zg per input y [36]. We compute the entropy of
the Gaussian base distribution using the closed-form [37]:

(14)

d d 1
Hyp, [20]y] + 5 In(2m) + 5 In[det X,

T2

which is more precise than the Monte Carlo estimation [36].

3.3. In practice

We compare the use of deterministic and the proposed inference
models with equivalent backbones in two experiments: (1) esti-
mating the parameters of an audio effect (here an equalizer), (2)
estimating the parameters of a FM synthesizer.

In both experiments, we compare the use of three models:

1. adeterministic baseline (cf. Fig. 1),

2. an inference model with 7" = 1 NF layers,

277

=
o
1

--- 3dB
7 dB

—~— 10dB
—*%— 3+7dB

[6,]

—————]

o

Filter gain (dB)

103
Frequency (Hz)

102

Figure 3: Frequency response of high shelf filters with respective
gains of 3 dB (blue), 7 dB (orange) and 10dB (green). The red line
shows the response of the cascade of the 3 dB and 7 dB filters. All
filters have the same center frequency and quality factor.

3. an inference model with 7" = 2 NF layers.

We ensure that the output z of all models is bounded by using
an output sigmoid layer. For the inference models, this last layer
is included in the normalizing flow: the entropy term in the loss
(Eq. (13)) aims to maximize the entropy of the sigmoid’s output.
We use deep sigmoidal flow (DSF) layers [38] with hidden size of
8 as our NF. We only denote the number of DSF layers with T":
it does not count the output sigmoid. We use deep sigmoidal flow
layers as they are very expressive [39] and easy to implement.

4. EXPERIMENT 1: ESTIMATING EQUALIZER
PARAMETERS

To gain deeper insight into the results of our experiment, we conduct
it in a controlled setting that is, where the applied audio effects and
their parameters are known. Since real audio data typically does
not include this information, we use synthetic data for this purpose.
We also use a specific setting of audio effects which allows to have
several parameter settings leading to the same audio output. The
synthetic data y are obtained by processing x with a single high
shelf filter while our model estimate this process using 2 high shelf
filters. Several solution therefore exist.

4.1. High shelf filters

High shelf filters allow to control the gain above a center frequency.
They have 3 parameters: (1) the center frequency f ; (2) the
gain of the filter above the center frequency g ; (3) the quality
factor () which sets the transition bandwidth. There are multiple
combinations of parameters that allow to match closely the curve
of one filter using two filters [40], as illustrated in Fig. 3.

Our model outputs the parameters of 2 high shelf filters in
cascade and tries to reconstruct a curve made with only 1 high
shelf filter. We therefore expect our model to estimate the correct
fi = fo= fand Q1 = Q2 = @, such that the sum of their gains
matches the one of the ground truth g1 + g2 = ¢, as shown in
Fig. 3.

4.2. Dataset

We randomly selected unprocessed audio samples x from the Mil-
lion Song Dataset (MSD) [41]. It contains stereo files sampled
at 22.05 kHz, which we converted to mono. We use a subset of
40,000 for training, 5,000 for validation and 5,000 for testing. At
each epoch, we randomly choose a 5 seconds long chunk of each
track. We constructed the processed signals y by applying one high

Proceedings of the 28" International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

shelf filter [42] to x with random parameters v (cf. Fig.) where
v is sampled from the uniform distribution v ~ U (e; [0, 1]%). We
then map the parameters using either affine or exponential functions
[43]:

f = e<1n(fmax)7ln<fn]in))VlJFln(fmin)7 (153)
g = (gmax - gmin)v2 + Gmin, (15b)
Q = (Qmax - Qmin)VS + Qmin, (ISC)

with f € [500, 2500] Hz, g € [—20,20] dB and Q € [0.1, 3.

4.3. Model architecture

All our models use the same backbone and have roughly the same
number of trainable parameters (= 295k). Our models take as
inputs the Log-scaled Mel spectrograms (LMS) of y, which are
computed using the nnAudio Python library [44]. We use LMS
with 64 Mel bands and a hop length of 23 ms. We consider this
LMS as a multi-channel signal, where each Mel band is a chan-
nel. This LMS is fed into multiple 1-D ConvNeXt blocks [45]: 3
blocks with 64 channels and 3 with 128 channels. The output of
this convolutional network is then averaged along the time dimen-
sion and fed to a small multi-layer perceptron (MLP). The MLP
uses batch normalization [46]. All activation functions (in the Con-
vNeXt blocks and in the MLP) are Swish activations [47], except
the output which is a Sigmoid. We denote the output z € [0, 1]°.

4.4. Differentiable audio effects

The network estimates the parameters of 2 high shelf filters. Each
band has 3 parameters, z is therefore 6-dimensional. We map z to
the frequency range using exponential functions (as Eq. (15a)) and
to the gain and (Q’s range using affine functions (like Egs. (15b),
(15¢)). Since there are two differentiable EQ bands, we restrain
their gain range to g1, g2 € [—10,10]dB. We use the parameter
ranges for frequencies and quality factors that were used to create
the signals y : fi, fo € [500,2500]Hz, Q1,Q2 € [0.1,3]. We
implement filtering operations in the frequency domain as it is
significantly faster than filtering in the time domain for training
using graphics processing units (GPUs).

4.5. Loss function

As in our previous work [16], we use a Log-scale Mel spectrogram
loss:

¢g,y) = [In(|Mel{g}| + 1) — In([Mel{y}| + 1)||5 .

We compute the Mel spectrograms using the nnAudio library [44]
that is based on a short-time Fourier transform (STFT) with a
window size of 4096 and a hop length of 1024 samples (46 ms).
We then compute the Mel spectrograms with 128 Mel bands.

For the inference models, we set empirically the weight of the
entropy term in the loss of (Eq. (7)) to § = 0.1.

(16)

4.6. Training details

Each model is trained during 200 epoch. One epoch corresponds
to 40,000 training samples and 5,000 validation samples. We use
the AdamW optimizer [48] with a learning rate of 5 x 1075, a
weight decay of 10™2 and a batch size of 16. We save the weights
that led to the best validation score and use them for testing.

278

Table 1: Quantitative results of the equalizer experiment.

Model T'| Entropy Audio distortion

bits/dim 1 Mel | MR-STFT | SI-SDR 1
Deter. - ‘ - 0.235 +0.420 0.412 +0.760 14.8 £5.7
Infer. 1 |—1.51+073 0.286+o0.458 0.477 £o0.800 13.5+6.1
Infer. 2 |—1.41+070 0.289+0.471 0.481 0824 13.6+6.0
Input - - 2.154 +2.010 4.302 +6.685 3.0+9.0

Table 2: Results when we take the best of Npesr samples. The
inference model uses 1" = 1 flow layers.

Model Npegt ‘ Mel | MR-STFT | SI-SDR 1
Deter. - ‘ 0.235 £0.429 0.412+0.760 14.8+5.7
Infer. 1 |0.286 +0.458 0.477 £0.800 13.5+6.1
2 10.241 +£o0.428 0.401 +0.731 15.3 t6.2
3 10.226 £0.435 0.373 0731 16.2+6.3
4 10.214 +0.415 0.354 +0.714 16.8+6.4
5 10.206 +0.413 0.340 £0.700 17.3 +6.5
10 [0.186 £0.396 0.307 +0.668 18.7+e6.8
Uniform 10 ‘ 0.667 +1.138 1.141 42271 11.8 ++75
4.7. Results

In this section, we analyze quantitatively and qualitatively our re-
sults.

4.7.1. Quantitative results

The test is performed over the 5,000 tracks of the test dataset. As
the signals x are processed with random parameters v to create
y, we run the test 5 times and indicate the average and standard
deviation value over those.

In Table 1, we present for each model the results both in terms
of audio quality and conditional differential entropy H,, [z|y]. We
measure the entropy in bits/dim:

Eonpo(21y) [— 1082 po(z]y)]/d. a7
It is a differential entropy computed using a density function rather
than a probability mass function, so it is not necessarily positive.
Moreover, since the output parameters are bounded z € [0; 1)°, the
entropy has an upper bound: H][z|y] < 0bits/dim [49, p. 269].

To quantify the audio quality we use three metrics: (1) the Log-
scaled Mel Spectrogram loss used for training (Mel) ; (2) the multi-
resolution STFT (MR-STFT) loss revisited by Schwir and Miiller
[50] ; (3) the scale invariant signal-to-distortion ratio (SI-SDR)
[51], which is measured in dB. As a baseline, we also report in row
“Input”, the value of the losses that would be obtained by directly
comparing the unprocessed signal x to the ground truth processed
signal y.

The best model in terms of audio quality is the deterministic
baseline. This was expected since our two inference models have
additional objectives (entropy). We also see that our two inference
models (Infer. 1 and Infer. 2) have roughly have the same per-
formance: 1 DSF layer seems sufficient for such a simple effects
chain.

Proceedings of the 28" International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

In Table 1, we represented the “Expectation” of the results:

IE(x,y)r\zp(m,y) ,z~pg (z|y) [f(y, fDDSP (Xa Z))] . (1 8)
Indeed, once our model estimates a distribution, we sample z from
this distribution, for each compute a loss and finally get the “Ex-
pectation” (mean value) of this loss over the z.

‘We can also mimick a real user scenario, in which the user runs
once the estimation (with a first sampling of z) and runs it again
(with another choice of z) until they are satisfied with the results.
In Table 2, we indicate the results we get by sampling a number
Nhyest of parameter vectors z, and then only retaining the best results
over the Nies. We see that taking the best sample of Npey = 2
already outperforms the deterministic baseline, and the results get
better and better as we increase the number of tries Npeg.

As a baseline, we report in row “Uniform” the results obtained
by sampling z from a uniform distribution 2/(e; [0, 1]°) (instead
of the distribution estimated by our model). We see that sampling
from an uniform distribution is not efficient. Even with as low
as 6 parameters in this case, the best out of 10 parameters sets
sampled this way still performs significantly worse than using the
deterministic baseline.

4.7.2. Qualitative analysis

As a reminder, our goal is to design a model that could obtain
the same output sound using multiple combination of parameters
(exploiting the links and redundancies in the processor parameters).
We want to see if our model behaves as we expected in section 4.1%.

To illustrate this, we perform the following experiment: for
each examples of the test set, we sample 20 parameter combinations
using our inference model with 7" = 1 DSF layer. We then compute
the Pearson correlation matrix of the parameters based on these 20
samples.

In Fig. 4, we show the mean of the correlations matrices com-
puted over the whole test dataset, with fi, g1 and Q)1 being the
parameters of the first equalizer band and f2, g2, Q2 the param-
eters of the second. As expected, most parameters sampled from
our approximate distribution are uncorrelated. However, the gains
of the two bands (g1 and g2) show the strongest correlation in ab-
solute value (—0.51): if one increases, the other decreases such
that g1 + g2 = g.

In Fig 5, we compare the ground-truth value (green +), de-
terministically estimated value (red x) and estimated distribu-
tion (background 2D-histogram) for a given audio. Since the
distribution lies in a d = 6 dimensional space, we only rep-
resent the marginal distributions pe(f1, f2|y), pe(g1, g2|y) and
po(Q1,Q2]y). For this example, both the deterministic and infer-
ence model estimate quite precisely the filter frequency (f1 and f2),
but the gain estimations (g1 and g2) are not as good and the quality
factors (@1 and Q)2) are completely off. This can be explained by
the choice of the loss function. However, as expected from Fig. 4,
the frequencies and @’s sampled from the approximate distribution
do not seem correlated; while the two gains g; and g» seem anti-
correlated. Some of the parameter sets sampled in this figure have
g2 ~ 0, which means means that in practice, the model sometimes
uses only one filter.

2We expect our model to estimate the correct fi = fo = f and
Q1 = Q2 = Q, and that the sum of their gains matches the one of the
ground truth g1 + g2 = g, as in Fig. 3.

279

fi g1 O1 f, 92 Q>

- 1.0
Nl — -0.01 -0.09 -0.14 -0.02 0.08 I

S —-0.01 0 -0.02 -0 - 0.5
=
S -009 0 0.02 -0.04 -0.11

- 0.0
W —-0.14 -0.02 0.02 0.01 -0
S —-0.02 -0.04 0.01 0.02 - —-0.5
$ -008 -0 -011 -0 0.02 [l

-—-1.0

Figure 4: Mean correlation matrix of the equalizer parameters
sampled with our inference model.

2500 10 3
2000 5 5
~N)
< 1500 2 o0 \ S
= <
1000 s 1
500 -10
1000 2000 -10 0 10 102 3
fi (Hz) g1 (dB) Q1

(a) Joint distribution of (b) Joint distribution of (¢) Joint distribution
the frequencies. the gains. of the quality factors.

Figure 5: Histograms of the parameter distribution given one input
y. The green symbols + or line shows the ground truth. The red
x shows the estimate obtained with the deterministic baseline.

5. EXPERIMENT 2: SOUND MATCHING WITH A
DIFFERENTIABLE FM SYNTHESIZER

In this experiment, we estimate the parameters used to generate
sounds using a simple frequency modulation synthesizer with one
modulator and one carrier.

5.1. FM synthesis

Frequency modulation synthesizers, introduced by Chowning [52],
rely on modulating the phase of carrier operators with modulator
operators. The output signal of a simple carrier y. of base fre-
quency f. and amplitude /. modulated with a sinusoidal modulator
with frequency fr, and amplitude I, is:

Ye(t) = I sin(2m fot + Iy sin(27 fint)). (19)

A differentiable FM synthesizer was proposed by Caspe et
al. [4] where the frequency ratios were fixed in order to facilitate
training with a multi-resolution STFT (MR-STFT) loss.

We implement our own version so that our network can estimate
the frequency of the modulator operator. For the sake of simplicity,
we do our experiment only on a combination of one carrier and one
modulator. Our synthesizer only has 2 parameters: the modulation
index I,, and the modulation frequency fy,. As in the DX7, I, is
bounded in I,,, € [0; 4] [4]. We also bound the frequency ratio
fm/ fe € [0.5;10]. We set the carrier amplitude to . = 1 and the
carrier frequency to f. = 110Hz, with a sampling-rate of 44.1kHz.

Proceedings of the 28" International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

5.2. Dataset

We create our dataset by sampling normalized parameters v in a
uniform distribution and then generating the sound examples. The
modulation index I, is the mapped in the following way:

3
gd327-99~vl—1,
4 () (202)

948
Iy, =4m- 1020 .

We did this to replicate parameter/modulation index curve of the
original DX7 [4, 53]. The frequency ratio is mapped with an affine
function:

fm/fc = 9.5vy + 0.5.

We generate sounds with a duration of 125ms.

(20b)

5.3. Model architectures

We only consider stationary sounds. Therefore, our model takes as
input the magnitude of the discrete Fourier transform of the signal,
fed into a MLP with Swish activations [47]. All models for this
experiments approximately have the same number of parameters
(= 170 k). The output normalized parameters are mapped to
synthesizer parameters according to Eqs (20a) and (20b).

5.4. Loss function

Neural networks struggle to estimate correct frequencies when us-
ing typical audio losses, such as the MR-STFT loss [54]. This lead
the authors of the DDX7 paper [4] to set the modulation ratios of
their models to fixed values. In our experiment, we want the model
to estimate correctly the frequency of the modulator operator. We
therefore need a loss function that is convex with regards to the
frequency ratio.

Among previously proposed solutions, the most promising is
the spectral optimal transport based spectral loss function. It mea-
sures the “displacement of spectral energy” [55] across frequencies
rather than the difference between the magnitudes. This loss is then
proportional to the pitch error for synthesizer signals.

We use a sum of a spectral optimal transport (SOT) loss and a
MR-STFT loss, following Torres et al. [55]. We use the SOT loss
with 64 frequency bins, and the MR-STFT as revisited in [50].

5.5. Training details

Each model is trained for 700 epochs, with one epoch consisting in
100,000 training samples and 10,000 validation samples. We use
the AdamW algorithm [48] with a learning rate of 10_4, a weight
decay of 1073 and a batch size of 128. We use the weights that
performed the best validation score for testing.

5.6. Results
5.6.1. Quantitative results

In Table 3, we indicate the results for the FM synthesis sound
matching experiment for our test-set made of 100,000 y samples
synthesized with random uniform parameters v. We evaluate our
system using the SOT loss used for training, the log-scaled Mel
spectrogram loss and the SI-SDR [51]. We also report the condi-
tional differential entropy of the inference models in bits/dim.

As a baseline we also report in row ‘“Random” the results
obtained when sampling random parameters z ~ U (e; [0, 1]?).

280

Table 3: Sound matching results of the FM synthesis experiment.
The row “Rand.” indicates the results obtained when sampling v
from a uniform distribution.

Model T'| Entropy Audio distortion

bits/dim 1 SOT | Mel | SI-SDR 1
Deter. - - 0.39 £1.24 0.063 £0.278 32.52 +19.9
Infer. 1|—2.43+251 2.12+233 0.386 +0.506 15.20 +20.62
Infer. 2| —2.42+250 2.13+£2.30 0.385 +0.507 15.16 +£20.76
Rand. - ‘ - 51.6 £82.6 4.686 +4.07a 2.13 +21.001

Both our inference models perform similarly in this experi-
ment. Here again, 1 DSF layer is enough. Also, as for the high
shelf filter experiment, results are worst when using the inference
model than the deterministic baseline. However, the probabilis-
tic models could have other uses like introducing variations in the
sound : by sampling a new parameter each time a note is played so
that every new note has a similar timbre than the previous but with
slight variations [6].

5.6.2. Qualitative analysis

We show in Figs. 6, 7 side-by-side maps of the SOT loss function
as well as a histogram of parameters sampled with our inference
model with 7" = 1 DSF layers. We also show the ground truth
parameters (GT) and the estimation by the deterministic baseline
(Deter.). On these figures, v; is the parameter controlling the
modulation index and v2 controls the frequency ratio (Egs. (20a),
(20b)).

In Fig. 6, the model tries to reconstruct a sound synthesized
using low modulation index - which yields harmonics with very
low amplitudes [52]. Therefore, the frequency ratio does not mat-
ter. Also, due the mapping between the normalized parameters z
and the modulation index (Eq. (20a)), having z; < 0.4 implies a
“negligible index” I, < 1, [53, p. 58]. Inside of this range,
the exact value of the normalized parameter associated with the
modulation index does not really matter, as shown on the loss map
of Fig. 6. In this case, the inference model samples are all over
the region where the loss is low. For this example, the conditional
differential entropy is very high (-0.54 bits/dim).

In Fig. 7, the model tries to reconstruct a sound synthesized
with a high modulation index /. Since the harmonics created by the
synthesizer have a high amplitude [52], estimating precisely both
the modulation index and frequency is important to reconstruct the
sound. Thus, the approximate distribution has a very low variance:
all the samples are very close (cf. Fig. 7). The conditional entropy
of the parameters is low for this example (-8.28 bits/dim).

We also synthesize sounds y = fppsp(Im, fm) for various
I, € [0;47], fm € [0.5f;;10f.] and we show in Fig. 8 the
conditional entropy of the estimated parameters from our model
H,,, [z|y] in function of I,,. The conditional entropy decreases as
the modulation index increases. We interpret this in the follow-
ing way: as the modulation index increases, the amplitude of the
harmonics also increases [52] and therefore the estimation of the
parameters needs to be more precise to accurately reconstruct the
sound, hence the decreasing entropy.

Proceedings of the 28" International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

N —

0.8 \
10°

0.6

S 101 &

0.4

0.2 1072

0.0 .

0.0 0.5 1.0 0.0 0.5 1.0
%73 V2

(a) Map of the loss function. (b) Histograms of the samples.

H,, [z|y] = —0.54 bits/dim.

Figure 6: Loss function map and histogram of samples for a ground
truth with a low modulation index.

1.0 ———— 0.9800
081 . 0.9775
0.6 10
g < 0.9750
04 i
02 097254 + GT
' 1071 X Deter.
0.0 ' 0.9700
0.0 0.5 1.0 0.795 0.800 0.805
V2 V2

(a) Map of the loss function. (b) Histograms of the samples,
zoomed in on the interesting part of
the figure.

Hyp, [z|y] = —8.28 bits/dim.

Figure 7: Loss function map and histogram of samples for a ground
truth with a high modulation index.

0
—~ =57
2E
©3 -10+
g2
S 151
_20 1 T T T T T T
0 2 4 6 8 10 12

Im

Figure 8: H), [z|y] of the estimated parameters in function of the
modulation index I,,. The solid line shows the average results
across f, values, the shaded area shows the 1% and 9" deciles.

6. CONCLUSION

This paper proposes a method to design and optimize a neural net-
work that could perform the blind estimation of processor parame-
ters and give multiple parameter sets that all reconstruct the target
sound. To do this, we use normalizing flows and rely on differen-
tiable digital signal processing and an appropriate loss function for
both accurate reconstruction and diverse parameters.

We evaluate our method with two experiments, showing that
our model is able to exploit the redundancies and links between the
processor parameters. The distribution of estimated parameters is
tailored to the desired effect: the irrelevant parameters for a given
sound are chosen almost randomly while the more important ones
can be very precisely set.

We will apply this method in future works to complex proces-
sors chain and use it in realistic experiments.

281

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

7. REFERENCES

T. Wilmering et al. “A history of audio effects,” Applied
Sciences, vol. 10, no. 3, p. 791, 2020.

P. Tagg, “Analysing popular music: Theory, method and
practice,” Popular Music, vol. 2, pp. 37-67, 1982.

J. Engel et al. “DDSP: Differentiable digital signal process-
ing,” in Proc. of ICLR, Addis Ababa, Ethiopia, 2020.

F. Caspe, A. McPherson, and M. Sandler, “DDX?7: Differen-
tiable FM synthesis of musical instrument sounds,” in Proc.
of ISMIR, Bengaluru, India, 2022, pp. 608-616.

N. Masuda and D. Saito, “Improving semi-supervised dif-
ferentiable synthesizer sound matching for practical appli-
cations,” IEEE/ACM TASLP, vol. 31, pp. 863-875, 2023.

G. Le Vaillant and T. Dutoit, “Latent space interpolation
of synthesizer parameters using timbre-regularized auto-
encoders,” IEEE/ACM TASLP, vol. 32, pp. 3379-3392,
2024.

C. J. Steinmetz et al. “Automatic multitrack mixing with
a differentiable mixing console of neural audio effects,” in
Proc. of IEEE ICASSP, Toronto, Canada, 2021, pp. 71-75.

M. A. Martinez Ramirez et al. “Automatic music mixing
with deep learning and out-of-domain data,” in Proc. of
ISMIR, Bengaluru, India, 2022, pp. 411-418.

M. A. Martinez Ramirez et al. “Differentiable signal pro-
cessing with black-box audio effects,” in Proc. of IEEE
ICASSP, Toronto, Canada, 2021, pp. 66-70.

J. T. Colonel and J. D. Reiss, “Reverse engineering of a
recording mix with differentiable digital signal processing,”
JASA, vol. 150, no. 1, pp. 608-619, 2021.

S. Lee et al. “Searching for music mixing graphs: A pruning
approach,” in Proc. of DAFx, 2024, pp. 147-154.

C.J. Steinmetz, N. J. Bryan, and J. D. Reiss, “Style transfer
of audio effects with differentiable signal processing,” JAES,
vol. 70, no. 9, pp. 708-721, 2022.

J. Koo et al. “Music mixing style transfer: A contrastive
learning approach to disentangle audio effects,” in Proc. of
IEEE ICASSP, Rhodes, Greece, 2023.

H. Han, V. Lostanlen, and M. Lagrange, “Learning to
solve inverse problems for perceptual sound matching,”
IEEE/ACM TASLP, vol. 32, pp. 2605-2615, 2024.

S. Lee et al. “Blind estimation of audio processing graph,”
in Proc. of IEEE ICASSP, Rhodes, Greece, 2023.

C. Peladeau and G. Peeters, “Blind estimation of audio ef-
fects using an auto-encoder approach and differentiable dig-
ital signal processing,” in Proc. of IEEE ICASSP, Seoul,
South Korea, 2024, pp. 856-860.

P. Esling et al. “Flow synthesizer: Universal audio synthe-
sizer control with normalizing flows,” Applied Sciences,
vol. 10, no. 1, p. 302, 2020.

G. Le Vaillant, T. Dutoit, and S. Dekeyser, “Improving syn-
thesizer programming from variational autoencoders latent
space,” in Proc. of DAFx, Virtual only conference, 2021,
pp. 276-283.

Proceedings of the 28" International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

G. Le Vaillant and T. Dutoit, “Synthesizer preset interpo-
lation using transformer auto-encoders,” in Proc. of IEEE
ICASSP, Rhodes, Greece, 2023.

N. Masuda and D. Saito, “Synthesizer sound matching with
differentiable dsp,” in Proc. of ISMIR, Online, 2021.

B. Hayes, C. Saitis, and G. Fazekas, “Neural waveshaping
synthesis,” in Proc. of ISMIR, Online, 2021, pp. 254-261.

S. Shan et al. “Differentiable wavetable synthesis,” in Proc.
of IEEE ICASSP, 2022, pp. 4598-4602.

S. Nercessian, “Neural parametric equalizer matching us-
ing differentiable biquads,” in Proc. of DAFx, Virtual only
conference, 2020, pp. 265-272.

B. Kuznetsov, J. Parker, and F. Esqueda, “Differentiable IIR
filters for machine learning applications,” in Proc. of DAFx,
Virtual only conference, 2020, pp. 265-272.

C.-Y. Yu and G. Fazekas, “Singing voice synthesis using
differentiable LPC and glottal-flow-inspired wavetables,” in
Proc. of ISMIR, Milan, Italy, 2023, pp. 667-675.

J. T. Colonel and J. Reiss, “Approximating ballistics in a
differentiable dynamic range compressor,” in Proc. of the
AES, New York, USA, 2022.

C.-Y. Yu et al. “Differentiable all-pole filters for time-
varying audio systems,” in Proc. of DAFx, Surrey, United
Kingdom, 2024, pp. 345-352.

S. Lee, H.-S. Choi, and K. Lee, “Differentiable artificial
reverberation,” IEEE/ACM TASLP, vol. 30, pp. 2541-2556,
2022.

G. D. Santo et al. “Differentiable feedback delay network
for colorless reverberation,” in Proc. of DAFx, Copenhagen,
Denmark, 2023, pp. 244-251.

A. 1. Mezza et al. “Data-driven room acoustic modeling via
differentiable feedback delay networks with learnable de-
lay lines,” EURASIP Journal on Audio, Speech, and Music
Processing, vol. 2024, no. 1, p. 51, 2024.

A. Carson et al. “Differentiable grey-box modelling of
phaser effects using frame-based spectral processing,” in
Proc. of DAFx, Copenhagen, Denmark, 2023, pp. 219-226.

J. T. Colonel, M. Comunita, and J. D. Reiss, “Reverse en-
gineering memoryless distortion effects with differentiable
waveshapers,” in Proc. of the AES, New York, USA, 2022,
p- 10.

Y.-T. Yeh et al. “DDSP guitar amp: Interpretable guitar
amplifier modeling,” in Proc. of IEEE ICASSP, 2025, pp. 1-
5.

1. Higgins et al. “Beta-VAE: Learning basic visual concepts
with a constrained variational framework,” in Proc. of ICLR,
Toulon, France, 2017.

D. Rezende and S. Mohamed, “Variational inference with
normalizing flows,” in Proc. of ICML, PMLR, 2015,
pp- 1530-1538.

D. P. Kingma and M. Welling, “Auto-encoding variational
bayes,” in Proc. of ICLR, Banff, Canada, 2014.

K. P. Murphy, Probabilistic Machine Learning: An Intro-
duction (Adaptive Computation and Machine Learning Se-
ries). Cambridge, Massachusetts: The MIT Press, 2022.

282

(38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

C.-W. Huang ez al. “Neural autoregressive flows,” in Proc. of
ICML, vol. 80, Stockholm, Sweden: PMLR, 2018, pp. 2078-
2087.

I. Kobyzev, S. J. Prince, and M. A. Brubaker, “Normaliz-
ing flows: An introduction and review of current methods,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 11,
pp- 3964-3979, 2021.

J. Abel and D. Berners, “Filter design using second-order
peaking and shelving sections,” in Proc. of ICMC, Miami,
FL, USA, 2004.

T. Bertin-Mahieux et al. “The million song dataset,” in Proc.
of ISMIR, Miami, USA, 2011, pp. 591-596.

R. Bristow-Johnson, RBJ audio-EQ-cookbook, 2005.

F. Mockenhaupt, J. S. Rieber, and S. Nercessian, “Automatic
equalization for individual instrument tracks using convo-
lutional neural networks,” in Proc. of DAFx, Surrey, United
Kingdom, 2024, pp. 57-64.

K. W. Cheuk et al. “nnAudio: An on-the-fly GPU audio
to spectrogram conversion toolbox using 1D convolutional
neural networks,” IEEE Access, vol. 8, pp. 161 981-162 003,
2020.

Z. Liu et al. “A ConvNet for the 2020s,” in Proc. of CVPR,
New Orleans, LA, USA: IEEE, 2022, pp. 11976-11 986.

S. Joffe and C. Szegedy, “Batch normalization: Acceler-
ating deep network training by reducing internal covariate
shift,” in Proc. of ICML, vol. 37, Lille, France: PMLR, 2015,
pp. 448-456.

P. Ramachandran, B. Zoph, and Q. V. Le, Searching for
activation functions, 2017. arXiv: 1710.05941 [cs].

L. Loshchilov and F. Hutter, “Decoupled weight decay regu-
larization,” in Proc. of ICLR, New Orleans, LA, USA, 2019.
arXiv: 1711.05101.

T. M. Cover and J. A. Thomas, Elements of Information
Theory, 2nd ed. Hoboken, N.J, USA: Wiley-Interscience,
2006.

S. Schwir and M. Miiller, “Multi-scale spectral loss revis-
ited,” IEEE SPL, vol. 30, pp. 1712-1716, 2023.

J. L. Roux et al. “SDR - half-baked or well done?” In
Proc. of IEEE ICASSP, Brighton, United Kingdom, 2019,
pp- 626-630.

J. M. Chowning, “The synthesis of complex audio spectra by
means of frequency modulation,” Computer Music Journal,
vol. 21, no. 2, pp. 46-54, 1977. JISTOR: 23320142.

J.M. Chowning and D. Bristow, FM Theory & Applications:
By Musicians for Musicians. Tokyo, Japan: Yamaha Music
Foundation, 1986.

J. Turian and M. Henry, “I’m sorry for your loss: Spectrally-
based audio distances are bad at pitch,” in Proc. of NeurIPS,
Virtual only conference, 2020.

B. Torres, G. Peeters, and G. Richard, “Unsupervised har-
monic parameter estimation using differentiable DSP and
spectral optimal transport,” in Proc. of IEEE ICASSP, Seoul,
South Korea, 2024, pp. 1176-1180.

https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1711.05101
http://www.jstor.org/stable/23320142

	1 Introduction
	1.1 Paper organization

	2 Related works
	2.1 Parameter-based approach
	2.2 Differentiable digital signal processing

	3 Inference of processor parameters
	3.1 Formalization
	3.2 Distribution modeling
	3.3 In practice

	4 Experiment 1: estimating equalizer parameters
	4.1 High shelf filters
	4.2 Dataset
	4.3 Model architecture
	4.4 Differentiable audio effects
	4.5 Loss function
	4.6 Training details
	4.7 Results
	4.7.1 Quantitative results
	4.7.2 Qualitative analysis

	5 Experiment 2: Sound matching with a differentiable FM synthesizer
	5.1 FM synthesis
	5.2 Dataset
	5.3 Model architectures
	5.4 Loss function
	5.5 Training details
	5.6 Results
	5.6.1 Quantitative results
	5.6.2 Qualitative analysis

	6 Conclusion
	7 References

@inproceedings{DAFx25_paper_19,
 author = "Peladeau, Côme and Fourer, Dominique and Peeters, Geoffroy",
 title = "{Audio Processor Parameters: Estimating Distributions Instead of Deterministic Values}",
 booktitle = "Proceedings of the 28-th Int. Conf. on Digital Audio Effects (DAFx25)",
 editor = "Gabrielli, L. and Cecchi, S.",
 location = "Ancona, Italy",
 eventdate = "2025-09-02/2025-09-05",
 year = "2025",
 month = "Sept",
 publisher = "",
 issn = "2413-6689",
 doi = "",
 pages = "275--282"
}

