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ABSTRACT

Efficient stable integration methods for nonlinear systems are
of great importance for physical modeling sound synthesis. Specif-
ically, a number of musical systems of interest, including vibrating
strings, bars or plates may be written as port-Hamiltonian systems
with quadratic kinetic energy and non-quadratic potential energy.
Efficient schemes have been developed for such systems through
the introduction of a scalar auxiliary variable. As a result, the sta-
ble real-time simulations of nonlinear musical systems of up to a
few thousands of degrees of freedom is possible, even for nearly
lossless systems. However, convergence rates can be slow and
seem to be system-dependent. Specifically, at audio rates, they
may suffer from numerical drift of the auxiliary variable, resulting
in dramatic unwanted effects on audio output, such as pitch drifts
after several impacts on the same resonator.

In this paper, a novel method for mitigating this unwanted drift
while preserving power balance is presented, based on a control
approach. A set of modified equations is proposed to control the
drift artefact by rerouting energy through the scalar auxiliary vari-
able and potential energy state. Numerical experiments are run
in order to check convergence on simulations in the case of a cu-
bic nonlinear string. A real-time implementation is provided as
a Max/MSP external. 60-note polyphony is achieved on a lap-
top, and some simple high level control parameters are provided,
making the proposed implementation suitable for use in artistic
contexts. All code is available in a public repository, along with
compiled Max/MSP externals1.

1. INTRODUCTION

In the context of physical modelling sound synthesis, efficient nu-
merical integration of differential equations is a great challenge.
In order to achieve real-time performance, algorithms must be
computationally cheap and numerically stable. A large variety of
methods is available in the literature, including digital waveguides
[1], modal synthesis [2] or finite difference methods [3]. One of
the most difficult problems is in ensuring numerical stability for
strongly nonlinear systems with an efficient numerical design.

Several numerical methods preserving an energy-like invariant
[4, 5] are interesting to address this issue. They apply to the large

1https://github.com/thomas-risse/SAV-string-simulations
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class of passive systems and allow to derive clear stability condi-
tions. Many existing schemes, like discrete gradients methods [6]
or projection methods [7, Section 5.3.3] rely on solving implicit
nonlinear equations, for which iterative solvers such as Newton-
Raphson are required. These are computationally prohibitive for
real-time musical use, fundamentally serial, and lead to additional
concerns in terms of convergence, stopping criteria, etc. For sys-
tems of cubic nonlinear type, including some models of string vi-
bration, as well as plate vibration at high amplitudes, it is pos-
sible to arrive at schemes satisfying an energy balance, and with
provable numerical stability conditions, See [3, chapter 8]. Such
schemes are in general linearly implicit—and require the construc-
tion and solution of a linear system at each time step. This avoids
the use of nonlinear iterative solvers but is still computationally
costly.

In recent years, some effort has been directed toward establish-
ing energy preserving schemes using energy quadratisation meth-
ods with auxiliary variables (see below) or without [8] (see also
[9] for an alternative to quadratisation). The Invariant Energy
Quadratisation (IEQ) method [10] is based on the simulation of the
state space augmented by a distributed variable storing the square
root of the energy density. Slightly later, the Scalar Auxiliary Vari-
able (SAV) method [11] was introduced, in which the state space is
augmented by a lumped variable storing the square root of the to-
tal energy of the system. The strength of these methods lies in the
fact that the energy of the system may be expressed as a quadratic
functional of the state variables, making any quadratic invariant
preserving scheme a good candidate for stable simulations [12].
The musical instrument modelling community has shown great in-
terest in these methods, for simulation of the geometrically nonlin-
ear string [13]. Such methods remain, however, linearly implicit,
and still reliant on linear system solutions in the time loop. More
recently, using time-interleaved variables, it has been possible to
arrive at fully explicit methods satisfying an energy balance for a
general class of Hamiltonian systems [14]. In this case, matrix
structure is exploited in order to avoid the linear system solution
entirely (through the use of the Sherman-Morrison identity [15]),
and such schemes can be viewed as stabilised forms of the classic
explicit Störmer-Verlet method, with additional state required for
storing the auxiliary variable. See [16, 17, 18] for musical applica-
tions, including in real time [19]. Other energy-conserving explicit
formulations have been proposed, but without a numerical stability
guarantee [9].

Even though SAV methods can be computationally efficient,
they may suffer from unwanted drifts of the auxiliary variable, re-
sulting in bad long term behaviour of the simulations: reference
[20] theoretically discusses this issue as well as convergence prop-
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erties of different schemes for the musical string, clearly indicating
that this problem is not trivial. In [21], alternative schemes are pro-
posed to address this issue in the context of collision problems by
constraining the sign of the auxiliary variable. Outside of the mu-
sical acoustics community, this problem is also well known: ref-
erence [22] introduces a relaxation step correcting the value of the
auxiliary variable by solving an optimization problem, for which
an efficient solution is derived in [23]. While these modifications
ensure stability, they introduce numerical dissipation, which is un-
desirable for simulating nearly lossless musical instruments.

In this paper, we present a novel method to address the aux-
iliary variable drift problem. Our approach is based on a modi-
fication of the continuous time equations and is suitable for port-
Hamiltonian systems (see [24] for an introduction) with quadratic
kinetic energy and general non-quadratic potential energy. This
method is applied to a nonlinear string model, a relevant case for
musical acoustics. The scheme is also implemented in a Max/MSP
external which is publicly available1, along with example sounds
and an interactive browser-based simulation on the companion
webpage.

The paper is organized as follows: section 2 presents the string
model and its semi-discrete approximation using finite differences.
Section 3 reviews the Scalar Auxiliary Variable transformation. As
a main contribution, Section 4 proposes a modification of the dy-
namical system in the continuous time domain, based on a control
approach, to reduce any SAV drift (due to e.g. inconsistent ini-
tial conditions or, numerical errors). An interleaved time stepping
scheme is provided in section 5 and evaluated through numerical
experiments in section 6. Section 7 discusses the real-time imple-
mentation and is followed by a general conclusion in section 8.

2. ENERGY CONSISTENT MODELLING

2.1. String equations (PDE)

Consider the dynamics of a string under geometrically nonlinear
conditions. The transverse displacement u(x, t) of a stiff string is
governed by the following PDE (see [25], model ST,4)

∂2
t u =

1

µ

[
(T∂2

x − EI∂4
x)u− 2µ(η0 − η1∂

2
x)∂tu

+
EA− T

2
∂x (∂xu)

3 + δ(x− xin)fin
]
,

(1)

Here, x ∈ [0, l0], for some string length l0 in m, and t ∈ R.
The various parameters, all assumed constant, are the radius R in
m, cross section A = πR2 in m2, moment of inertia I = πR4/4 in
m4, density ρ in kg· m−3, linear mass density µ = ρA in kg· m−1,
string tension T in N, Young’s modulus E in Pa, and dissipation
coefficients η0 and η1. fin(t) in N, is a driving term at position
x = xin, where δ is a Dirac delta function. Simply-supported
boundary conditions u = ∂2

xu = 0 are employed at the domain
endpoints x = 0 and x = l0. Zero initial conditions are assumed
(so that u(x, 0) = ∂tu(x, 0) = 0 for x ∈ [0, l0]). This simple
model results from a 4th order Taylor expansion and reduction
to transverse displacement only of the geometrically exact string
model [26]. It has been chosen for the following reasons:

• It is a problem that the baseline SAV method struggles to
handle properly (see e.g. Figure 5 of [17] and associated
discussion),

• It contains some key elements of musical string modelling
(stiffness, frequency dependent losses),

• It is relatively simple (no longitudinal displacement, no
coupling to resonators).

For an overview of more involved musical string models, see [27,
28]. Note that the time integration scheme presented in the next
sections may be adapted to most of these other models after spatial
discretisation.

2.2. Finite difference discrete model as a port-Hamiltonian
system

Consider the class of system written in the port-Hamiltonian
framework (see [24] for an introduction) as

[
d
dt
p

d
dt
q

]
︸ ︷︷ ︸

f

=


[
0 −J0

J⊺
0 0

]
︸ ︷︷ ︸

J

−
[
R0 0
0 0

]
︸ ︷︷ ︸

R


[

M−1p
Kq+ fnl(q)

]
︸ ︷︷ ︸

e

+

[
Gp

0

]
u, (2)

with state α = [p,q]⊺ and associated flow f , effort e, input u,
skew-symmetric interconnection matrix J and symmetric positive
semi-definite dissipation matrix R.

The effort vector e, including the nonlinear driving force
fnl(q) = ∂Enl

∂q
(q) is defined as the gradient of the Hamiltonian

(total stored energy of the system)

H(p,q) =
1

2

(
p⊺M−1p+ q⊺Kq

)
+ Enl(q). (3)

Moreover, in this work, M and K are assumed to be symmet-
ric positive definite matrices and the nonlinear potential energy
Enl(q) is required to be bounded from below with Enl(0) = 0.
This ensures that H(p,q) is a Lyapunov function of the au-
tonomous system. (The separation of the potential energy into a
quadratic and non-quadratic part allows additional flexibility in the
design of numerical methods satisfying an energy balance [14].)
From standard port-Hamiltonian theory, system (2) satisfies the
power balance

d

dt
H(p,q) = −p⊺M−1RM−1p+ p⊺M−1Gpu. (4)

A semi-discrete formulation of the string equations (1) is ob-
tained using structure preserving finite differences. The general
method is presented in [29] and not detailed here for brevity. It
results in a semi-discrete port-Hamiltonian system of the form (2)
with p ≡ [p1, ..., pN−1]

⊺ momenta and q ≡ [q1, ..., qN−1]
⊺ trans-

verse displacements at the nodes of a spatial grid, with grid spacing
h such that l0 = Nh. System matrices and operators are 2

J0 =
I
h
, M−1 = h

I
µ
, K = h(−T I+ EID2)D2, (5a)

R0 = −2µ

h
η1D

2 +
2µ

h
η0I, (5b)

Enl(q) = h
EA− T0

8
((D−q)◦2)⊺(D−q)◦2, (5c)

fnl(q) = −h
EA− T0

2
D+ [

D−q
]◦3

, (5d)

u = fin (5e)

2x◦N denotes element-wise exponentiation (Hadamard operation).
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with finite difference matrices

D− =
1

h


1 0

−1
. . .
. . . 1

0 −1

 ∈ RN,N−1, (6a)

D+ = −(D−)⊺, D2 = D+D−. (6b)

3. SCALAR AUXILIARY VARIABLE
TRANSFORMATION

Scalar auxiliary variable methods are based on a change of state
to describe the system dynamics, used to design efficient energy
stable numerical schemes. The large literature available proposes
a variety of possible state transformations, presented in [30], that
may be applied to port-Hamiltonian systems (also in a larger class
than (2)). This work is focused on the original SAV method from
[11] which has been used for the simulation of systems like (2) in
the context of musical acoustics in recent years.

The scalar auxiliary variable is introduced as

r(t) =
√

2Enl(q) + C0 (7)

and is appended to the system state to yield αsav = [p,q, r]⊺.
Here, C0 > 0 is a gauge constant. Extended matrices

Ĵ =

[
J 0
0 0

]
, R̂ =

[
R 0
0 0

]
(8)

are defined. The dynamics of system (2) may then be rewritten
equivalently, using the chain rule d

dt
p

d
dt
q

d
dt
r


︸ ︷︷ ︸

fsav

=
(
Ĵ+ Jsav(αsav)− R̂

)M−1p
Kq
r


︸ ︷︷ ︸

esav

+

Gp

0
0

u,

(9a)

where the skew-symmetric matrix Jsav is of the form

Jsav(αsav) =

 0 0 −g(αsav)
0 0 0

g⊺(αsav) 0 0

 , (9b)

with g(αsav) := gstd(q) = J0fnl(q)√
2Enl(q)+C0

. The effort vector

esav is now the gradient of the Hamiltonian of the system in the
new state space

Hsav(αsav) =
1

2

(
p⊺M−1p+ q⊺Kq+ r2

)
, (10)

and the power balance remains unchanged. Systems (2) and (9) are
equivalent in the sense that for consistent initial conditions satisfy-
ing r(t0) =

√
2Enl(q(t0)) + C0, they yield the same trajectories

in the original phase space [p,q]. Moreover, any trajectory of (9)
generated from consistent initial conditions satisfies relation (7)
for all t ≥ t0.

4. DRIFT CONTROL

System (9) presents a key advantage for efficient energy sta-
ble simulation, as the corresponding Hamiltonian is quadratic,
as discussed in previous work [14]. However, designing effi-
cient schemes typically requires explicit evaluation of the matrix
Jsav(αsav). As a result, drift between numerical values of r and√

2Enl(q) + C0 may appear, even for consistent initial condi-
tions. This can have a dramatic effect on simulations, as shown
in the numerical experiments section, as the simulated SAV sys-
tem is then no longer equivalent with the original system. This
has been documented in the literature in e.g. [17, 23, 21]. On the
studied string model, the auxiliary variable drift causes a progres-
sive degradation of the numerical results for successive hits of the
string, as can be seen on blue traces of Figure 4.

The main contribution of this paper consists of the introduc-
tion of a new method reducing the impact of the numerical drift
problem. Our proposed approach to tackle this problem lies in the
addition of a control term to system (9) before time discretization,
guided by a set of requirements:

• (R0): The (scalar) drift measure

ϵ(q, r) = r −
√

2Enl(q) + C0, (11)

is governed by the control law

ϵ̇ = −λ0ϵ, (12)

• (R1): The drift controller must not change the global
power-balance. Consequently, it must be expressible as a
skew-symmetric modification of the interconnection matrix
Jsav in (9a),

• (R2): The dynamics of the modified system must be that of
system (9) if ϵ = 0.

Using (R0), the modified dynamics of r may be written as

ϵ̇ = −λ0ϵ, (13a)

(11)⇔ṙ = −λ0ϵ(q, r) +
∂qEnl(q)

⊺q̇√
2Enl(q) + C0

, (13b)

(9a)⇔ṙ = −λ0ϵ(q, r) +
∂qEnl(q)

⊺J⊺
0M

−1p√
2Enl(q) + C0

, (13c)

where the second right-hand term is already present in system (9).
The addition of the control term −λ0ϵ(q, r) under requirement
(R1) is however not trivial as ϵ does not appear in the effort vector
esav. Here, we build an approximation to unity from the velocity

M−1p as 1 =
||M−1p||

L1

||M−1p||
L1

, with L1 norm ||y||L1 = sign(y)⊺y.
Using this choice, the dynamics of the modified systems is given
by system (9) with modified auxiliary variable coupling term

g(αsav) := gstd(q) + gmod(αsav), (14a)

gmod(αsav) = −λ0ϵ(q, r)
sign(M−1p)

||M−1p||L1
. (14b)

The modified system naturally fulfills requirement (R2) as
g(αsav) is a first order perturbation of gstd(q) with parameter
ϵ(q, r) and as ϵ̇ = 0 if ϵ = 0. In order to fulfill requirement
(R1), note that the dynamics of p for the modified system has
however been altered in cases where ϵ ̸= 0. To summarize, the
method consists of adding gmod to the standard gstd term in (9b)
and modifying the time-stepping scheme accordingly (see section
5).
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5. ENERGY-PRESERVING NUMERICAL SCHEME

An efficient energy preserving time-interleaved scheme for (9) is
built using a Stormer-Verlet scheme for the linear part of the wave
equation coupled to a midpoint scheme for the SAV part [14].

5.1. Presentation

For improved efficiency, it is customary to treat some dissipative
terms implicitly and others explicitly. In the following, the dis-
sipation matrix is decomposed as R = Rsv + Rmid with Rmid

diagonal and positive semidefinite and Rsv positive semidefinite.
State variables are approximated by time series defined on inter-
leaved grids as pn, qn+ 1

2 and rn. These time series approximate
the values of the continuous time functions at times tn = ndt and
tn+ 1

2 = (n + 1
2
)dt, where dt = 1

sr
is the sample period. The

forward difference operator δt+wn = (wn+1 − wn)/dt and forward
averaging operator µt+w

n = (wn+1 + wn)/2 are used to define the
scheme as

δt+p
n = − J0Kqn+ 1

2 −RsvM
−1pn (15a)

−RmidM
−1µt+p

n − ḡnµt+r
n +Gpu

n+1/2,

δt+q
n− 1

2 =J⊺
0M

−1pn, (15b)
δt+r

n = (ḡn)⊺M−1µt+p
n, (15c)

where ḡn is a consistent explicit evaluation of g at timestep n. In
this work, we use expressions given in table 1.

Standard SAV SAV with drift control

ḡn = gstd(q
n+1/2)

ḡn = gstd(q
n+1/2)

+ gmod(p
n, µt+q

n−1/2, rn)
Table 1: Evaluation of ḡn without and with drift control.

Independently of this choice, the scheme satisfies the discrete
power balance

En+1 − En

dt
=− (M−1µt+p

n)⊺RM−1µt+p
n︸ ︷︷ ︸

P
n+1/2
diss

≥0

(16)

+ (M−1µt+p
n)⊺Gpu

n+ 1
2

with pseudo-energy

En =
1

2

(
(pn)⊺M̃−1pn + (µt+q

n− 1
2 )⊺Kµt+q

n− 1
2 + (rn)2

)
,

(17)
and modified mass matrix

M̃−1 = [I− dt

4
(dtM−1J0K

⊺J⊺
0 +2M−1Rsv)]

(
M−1) . (18)

The scheme is stable under the condition that the pseudo-energy is
non-negative, which holds if M̃−1 is positive definite. The stabil-
ity condition thus depends only on a spectral analysis of the linear
part of the system. Note that dissipative contributions evaluated
with the midpoint effort estimate (corresponding to matrix Rmid)
are purely dissipative as Pn+1/2

diss ≥ 0, whereas dissipative contri-
butions evaluated explicitly (corresponding to matrix Rsv) change
the expression of the conserved pseudo-energy as well as the sta-
bility condition through modification of M̃−1 in (18). This is the
same as the case of backward difference approximations used in
the case of linear string vibration [3].

5.2. Update form

Even though (15) is semi-explicit, efficient update is in fact pos-
sible for systems having diagonal mass matrix M. Indeed, given
pn, qn−1/2 and rn, time stepping may be performed following the
following operations

qn+1/2 = qn−1/2 + dtJ⊺
0M

−1pn (19a)

ḡn = gstd(q
n+1/2) + gmod(p

n, µt+q
n−1/2, rn) (19b)

Anpn+1 = −J0Kqn+1/2 +Bnpn − ḡnrn +Gpu
n+1/2

(19c)

rn+1 = rn + dt(ḡn)⊺M−1µt+p
n (19d)

with

An =
I
dt

+
dt

4
ḡn(ḡn)⊺M−1 +

Rmid

2
M−1, (19e)

Bn =
I
dt

− dt

4
ḡn(ḡn)⊺M−1 − Rmid

2
M−1 −RsvM

−1,

(19f)

and where the linear system (19c) can be solved efficiently by not-
ing that An is a rank 1 perturbation of a diagonal matrix. Lever-
aging the Sherman-Morrison inversion formula [15], one obtains

(An)−1 = M

[
A−1

0 − dt

4

A−1
0 ḡn(ḡn)⊺A−1

0

1 + dt
4
(ḡn)⊺A−1

0 ḡn

]
, (19g)

A−1
0 = 2dt (2M+Rmiddt)

−1 . (19h)

Reduction to an update on qn+1/2 and rn uniquely is possible if
matrix J0 is diagonal. This corresponds to cases in which (2) may
be reduced to an equivalent second order ODE in q and is the case
for the string model.

5.3. Stability condition for the string

The modified mass matrix for the discrete string model (6) reads

M̃−1 =
h

µ

[
I+

(
dt2

4µ
(T I− EID2) + dtη1I

)
D2

]
. (20)

The stability condition is directly obtained from noticing that the
lowest eigenvalue of −D2 is equal to −max(λD2) = − 4/h2 and
writes

h ≥ hmin =

√
γ +

√
γ2 + 16µEIdt2

2µ
, γ = dt2T + 4dtµη1.

(21)

5.4. Reference scheme

In the following, a reference energy preserving semi-explicit
scheme for cubic nonlinearities is used for comparison [25]. Us-
ing the same notations and operators as before, as well as δttwn =
1/dt2(wn+1 − 2wn +wn−1) and δt•w

n = 1/2dt(wn+1 −wn−1),
it writes

δttq
n =

1

µ

[
(TD2 − EID4)qn − 2µ(η0I− η1D

2)δt•q
n

+
EA− T0

2
D+(D−qn)2(D−µt+q

n)
]

(22)

for the isolated cubic nonlinear string. The stability condition is
also given by (21). Updating for this scheme requires the solution
of a tridiagonal linear system at each timestep.
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6. NUMERICAL EXPERIMENTS

This section presents results of numerical experiments performed
on the string model using the proposed drift-controlled SAV
method. First, the numerical power balance and convergence of
the scheme are illustrated. Second, the effect of the new control
term is studied and the choice of parameter λ0 discussed.

6.1. Power balance and convergence of the scheme

Configuration: A string with fixed physical parameters given in
table 2 is used.

l0 = 1.1 m, ρ = 8000 kg.m−3, T = 60 N, E = 2× 1011 Pa
s0 = 0.9 s−1, s1 = 4× 10−4 m2s−1, A = π(0.4× 10−3)2 m2

Table 2: Fixed physical parameters.

The external forcing term and initial velocity are set to zero.
The initial displacement is set to correspond to the first modal
shape of the linear string, or

u−1/2 = u
1/2 = U0

[
sin

( π

N

)
, ..., sin

(
(N − 1)π

N

)]
, (23)

with amplitude U0. The auxiliary variable is initialized accord-
ingly from the value of u0 = 1

2

(
u−1/2 + u

1/2
)

. For a given
sampling frequency, N is determined using the formula

N = 2

⌊
κ l0

2hmin

⌋
, (24)

with 0 < κ ≤ 1 a tuning parameter. Note that N is forced to
be even, as this ensures that the displacement at the middle of the
string can be observed as û = uN/2 (scalar).

Power balance: A simulation with U0 = 0.01 m is run at
sr = 44100 Hz and h = hmin. Figure 1 shows the relative
error on the energy balance, obtained as the error on (16) mul-
tiplied by dt/E0. The error is on the order of machine precision
in double-precision floating point arithmetic (error values closer
to 10−15 could probably be obtained with proper scaling of the
equations, which was not performed in this work), which shows
that the scheme is indeed energy stable for quantities defined in
the previous section. From (16), this result does not depend on the
new control parameter λ0 or on the initial amplitude V0.

0.00 0.05 0.10 0.15 0.20

Time (s)

−2.5

0.0

2.5

E
n

er
g
y

er
ro

r

×10−13

Figure 1: Numerical error on relative energy balance with λ0 =
1000 s−1.

Convergence: A set of B sampling frequencies
{sr0, 2 sr0, ..., 2B−1sr0} Hz is used for simulations, with sr0 =
20000 Hz. A reference solution uref is built using the reference

scheme (22) with sr = 4 ∗ 2B−1sr0 Hz. For each sampling fre-
quency, N is computed using (24), with κ = 0.9 or κ = 1. So-
lutions are computed for a 0.1s duration using the reference algo-
rithm and the proposed algorithm with λ0 = {0, 1000} s−1. Note
that the case λ0 = 0 corresponds to the explicit time-interleaved
SAV scheme recently reported in the literature [14]. The relative
L2 error (intended on time series of scalar quantities) on the dis-
placement of the middle of the string is used and computed as

e(û, ûref ) = ||û − ûref ||2/||ûref ||2, (25)

for each solutions. Figure 2 displays convergence curves for
U0 = 8 × 10−3m and κ = 0.9. In this case, all schemes seem
to converge with a second order slope. However, this result should
be proved (or disproved) since the numerical scheme is second or-
der accurate when there is no drift but the drift rejection is operated
with a formally first order accurate scheme.
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Figure 2: Convergence study for U0 = 8 × 10−3m and κ = 0.9,
with λ0 = 0s−1 and λ0 = 1000s−1. The grey dashed line indi-
cates the second order convergence slope.

Figure 3 displays the same convergence curves for κ = 1.
In this case, convergence is not observed for the studied range of
samplerate values.
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Figure 3: Convergence study for U0 = 8×10−3m and κ = 1, with
λ0 = 0s−1 and λ0 = 1000s−1. The grey dashed line indicates the
second order convergence slope.

For linear systems, it is known that κ = 1 maximizes output
bandwidth. However, for nonlinear systems, this is not the case
as the time stepping scheme may introduce some spectral alias-
ing, which is reduced if the eigenvalues of the discrete system are
farther from Nyquist’s frequency [3]. This indicates that it might
be preferable to slightly reduce κ and over-sample the simulation
such that eigenfrequencies of the linear part are represented up to
the hearing limit f = 20 kHz, while reducing unwanted aliasing.
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6.2. Long term behaviour and effect of the new control term

The effect of the control term λ ≥ 0 is not clearly visible on con-
vergence curves. However, it greatly inflluences the long term be-
haviour of the simulations. Figure 4 presents an analysis of the
output of the real-time implementation in Max/MSP. The string is
set to have a fundamental frequency of f0 = 80 Hz and is excited
every second by a half cosine force of period 1ms and maximum
amplitude 1N. The top row displays a time-frequency analysis of
the output velocities for λ0 = 0s−1 and λ0 = 1000s−1. The
bottom row shows the evolution of the relative SAV drift value.

The original explicit SAV algorithm from [14] leads to a severe
drift of the scalar auxiliary variable which is clearly observed on
the bottom row and reaches up to 10000 relative error. This results
in clear audible artifacts that progressively degrade after each con-
secutive excitation. these are audible as spurious pitch bends and
parasitic high frequency noise. The proposed method successfully
keeps the relative drift value low. As a result, synthesis quality
does not degrade after several hits: pitch and harmonic content re-
main stable. Note that the slight up bend observed at each impact
is an expected effect due to the nonlinearity of the string model.

The tuning the value of λ0 remains an open question. Indeed,
it must ideally be as high as possible to be more reactive to a sud-
den increase in the value of ϵ, possible during high amplitude tran-
sients. However, it is important to note that the numerical reali-
sation of the control law (12) is not guaranteed to be converging,
even though the simulation itself is stable In practice, divergence
of ϵ was only observed for λ0 ≥ sr.

7. REAL-TIME APPLICATION

Due to the explicit interleaved design, the algorithm presented here
is efficient enough to be run in real-time audio environments. This
section presents the implementation of the model as a Max/MSP
external. It allows the instantiation of an object representing a sin-
gle string with given physical parameters. Using multi-threading,
60 note polyphony was obtained for sample-rate sr = 96000 Hz.
First, the framework used for this implementation is quickly pre-
sented and then, the computational efficiency is studied.

7.1. Framework and general presentation

The algorithm is implemented in C++ using the Eigen library for
vector arithmetic. All matrix products are reduced to vector op-
erations, noting that that difference matrices are at most penta-
diagonal. The MinDevKit C++ API is used to define and build a
Max/MSP object, represented in Figure 5. An example user inter-
face built around this object is shown in Figure 6. It presents the
user with 5 audio-rate input signals and 3 audio-rate output signals.

The string model is excited locally by the scalar force signal
Fin at position x = xex/l0. vL := u̇(xL, t) and vR := u̇(xR, t)
are velocity signals drawn from the string at two independent lis-
tening points (“pickups"), providing an artificial stereo audio out-
put. First-order interpolation between two adjacent grid points is
performed, both for excitation and listening positions. A pitch
bend signal is also provided to the object. The scalar auxiliary
variable drift ϵ is also generated as an output, mostly for monitor-
ing and demonstration purposes and qualitative assessment of the
effect of λ0.

Fin bend xex xL xR

String object

Perceptive Physical
f0

β

f0
60, t60(f

0
60)

f1
60, t60(f

1
60)

ρ,R

E

T, l0

η0, η1

vL vR ϵ

Figure 5: Max/MSP object diagram.

Figure 6: Screenshot of the proposed Max/MSP interface for in-
teracting with a single string.

7.2. Physical parameters

The physical constants of the string are not presented directly to
the user. Instead, they are derived from a set of higher level percep-
tual parameters. The fundamental frequency f0 and inharmonicity
factor β are related to physical parameters using the relation

fn ≈ (n+ 1)
1

2l0

√
T

µ

√
1 + β(n+ 1)2, β =

π2EI

T l20
, (26)

which comes from an analysis of the eigen-frequencies of the lin-
ear stiff string model. ρ, R and E are fixed to a set of values corre-
sponding to the string material. From (26), T and l0 are obtained
as

T = 2πf0

√
EIµ

β(1 + β)
, l0 =

π

2

√
EI

βT
. (27)
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Figure 4: Top: evolution of partial frequencies for repeated strikes on the string. Bottom: evolution of the relative SAV drift value. Orange:
with anti-drift (λ0 = 1000s−1, see (12)), blue: without anti-drift (λ0 = 0s−1).

The two dissipation coefficients η0 and η1 are computed from de-
cay times given at two frequencies t60(f

0
60) and t60(f

1
60) using

formulas given in [3, Chapter 7].

7.3. Modulations

The first dissipation coefficient η0 may be modulated in real-time
without interfering with the stability condition as it does not inter-
vene in (21). Modulation of this parameter allows the modification
of bulk general damping by shifting the decay time curve vertically
without changing its shape.

Real-time modulation of the other physical parameters is not
straightforward as the stability condition depends on their values.
In this work, small modulations of l0 modulations (and conse-
quently h) are used to implement the pitch bend. An objective
fundamental frequency is derived from the pitch bend signal (in
cents) as fbend = f0

(
bend
1200

)2. From this modified frequency and
other physical parameters, a modified length lbend is determined
using (26). Finally, h is computed as

h = max

(
lbend
N

,hmin

)
, (28)

ensuring the stability of the simulation. Note that the maximum
up-bend depends on the value of κ chosen at initialization.

7.4. Computational efficiency

Table 3 presents the real-time ratios of the C++implementation for
different system sizes and floating point number representations.
Values are obtained as the ratio of the computing time and of the
effective computed output duration. Simulations were run on a
MacBook Pro M3 with sr = 44100 Hz for 20 s of effective out-
put signal. Results for other sampling rates are not provided here

for brevity but may be obtained simply by executing the timing
script of the provided code. Compared to the original explicit SAV
scheme from [14], the proposed method is near 40% more expen-
sive, which is expected as the nonlinear function must be evaluated
twice to obtain ḡn in equation (19b). However, the computational
cost is still well below the real time limit.

f0 (Hz) N 32 bit 64 bits 64 bits original SAV
20 360 3.6 % 7.3 % 5.3 %
50 215 2.2 % 4.1 % 3 %

100 140 1.5 % 2.7 % 2 %
200 84 0.99 % 1.6 % 1.2 %

Table 3: Real time ratios of the C++ Eigen implementation run on
a MacBook Pro M3 for sr = 44100 Hz. Different fundamental
frequencies and sampling rates are used. Ratios are given for both
32-bit floating point and 64-bit floating point numbers. The last
column presents the results for the original explicit SAV method
from [14], without the cost of the additional control term compu-
tation.

8. CONCLUSION

The proposed method extends the explicit time-interleaved SAV
scheme presented in [14] to overcome the auxiliary variable drift
problem. It is based on the new idea of the introduction of a addi-
tional control term in the continuous time equations.

We have presented the results of an application of this method
to the simulation of a nonlinear musical string. As with the origi-
nal SAV scheme, general convergence results remain to be proved.
From a practical point of view, the proposed modification enhances
the long-term behaviour of the simulation. Specifically, it prevents
spurious pitch drifts from building up as the string is struck mul-
tiple times. The computational efficiency remains relatively high,
making the algorithm useful for real-time synthesis. The proposed
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Max/MSP implementation demonstrates a simple digital instru-
ment based on the simulation of 60 uncoupled nonlinear strings
excited by synthetic force signals. A more realistic setting may be
achieved by modelling the exciter (i.e. hammer or bow) and cou-
pling the strings together through a bridge. Note that these com-
ponents may be formulated considering a passive coupling under
a port-Hamiltonian representation, such that the general method-
ology proposed in this paper would still be valid.

Future work includes more general numerical experiments on
a broader category of dynamical systems. In the context of musical
instrument modelling, collision problems are usually the most dif-
ficult to deal with and would present the greatest challenge for the
proposed method. Tests on two-dimensional systems, like nonlin-
ear plate vibrations are also of interest for e.g. drum or gong sound
synthesis (see [19], where the explicit SAV method has been used
for this purpose, and where drift does pose a major problem). From
a theoretical point of view, this paper presents one of many possi-
ble solutions for the discrete evaluation of the proposed additional
control term for which careful analysis may lead to refined choices.
Other control laws may also be considered (by e.g. adding an in-
tegral control term).
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