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ABSTRACT

From the exploration of databases of instrument sounds to the self-
assisted practice of musical instruments, methods for automatically
and objectively assessing the quality of musical tones are in high
demand. In this paper, we develop a new algorithm for estimating
the duration of the attack, with particular attention to wind and
bowed string instruments. In fact, for these instruments, the quality
of the tones is highly influenced by the attack clarity, for which,
together with pitch stability, the attack duration is an indicator often
used by teachers by ear. Since the direct estimation of the attack
duration from sounds is made difficult by the initial preponder-
ance of the excitation noise, we propose a more robust approach
based on the separation of the ensemble of the harmonics from the
excitation noise, which is obtained by means of an improved pitch-
synchronous wavelet transform. We also define a new parameter,
the noise ducking time, which is relevant for detecting the extent of
the noise component in the attack. In addition to the exploration of
available sound databases, for testing our algorithm, we created an
annotated data set in which several problematic sounds are included.
Moreover, to check the consistency and robustness of our duration
estimates, we applied our algorithm to sets of synthetic sounds with
noisy attacks of programmable duration.

1. INTRODUCTION

Methods for assessing the tone quality of instrumental sounds are
desired in various Music Information Retrieval (MIR) applications.
In [1] a model was proposed for the evaluation of the quality of sin-
gle notes from trumpet, clarinet, and flute by analyzing five sound
attributes: dynamic stability, pitch stability, timbre stability, timbre
richness, and attack clarity. For several musical instruments, such
as wind and bowed strings, the attack phase is a very critical seg-
ment of the note that heavily influences the timbral and articulation
aspects of the overall produced tone. It is the time interval in which,
by exciting the right resonant modes, the noisy excitation gives way
to a louder and possibly stable harmonic sound: the transition from
pure chaos to ordered chaos.

The characterization of the salient elements of the attack-
transient could play a significant role in unassisted practice while
learning to play musical instruments. The learners can check the

* Partial funding for this study was provided by a Doctoral Research
Scholarship from the FRQ-NT and by Gary Scavone through the NSERC
Discovery Grant (ID: RGPIN-2020-04874)

Copyright: © 2025 Gianpaolo Evangelista et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution 4.0 International
License, which permits unrestricted use, distribution, adaptation, and reproduction in

any medium, provided the original author and source are credited.

110

Alberto Acquilino ™

Department of Music Research
MCcGill University, Montreal, Canada
alberto.acquilino@mail.mcgill.ca

quality of the tones they produce from objective feedback param-
eters such as attack time and pitch stability. Moreover, accurate
descriptors associated with note quality can enhance the search in
sound databases for the best or most suitable tones. In this paper,
we focus on sound descriptors that are relevant to the automatic
assessment of the clarity of the attack.

There is no common consensus on the definition of the attack
boundaries. In [2], Luce and Clark defined this as the time from
the onset of the note until the sound pressure level reaches 3 dB
below the steady-state value. Their empirical approach provided a
first framework for measuring attack durations in non-percussive
instruments, accounting for variations in pitch, dynamics, and per-
former’s style. However, as also noted in [3], the tones produced
by several instruments do not show clear decay and sustain phases.
This implies that one cannot rely on the detection of a proper steady-
state amplitude of the tones.

Measurements of the duration of the attack reported in [1]
made use of methods implemented in the Timbre Toolbox (TT) [3].
In its early releases [4], the duration of the attack is detected by
finding the time interval from the onset of the note to the instant
in which the maximum amplitude, or a given percentage of it, is
attained. To address the limitations of fixed threshold methods,
Peeters introduced the weakest-effort method [3]. This method,
implemented as an option in subsequent releases of the TT, uses
highly smoothed versions of the signal envelopes to compute the
start and end of the attack based on adaptive thresholds estimated
according to the behavior of the signal during the attack phase.

The noise present in the raw envelopes may lead to large errors
in positioning the end of the attack phase. However, excessive
smoothing of the envelopes results in estimated amplitudes that
do not adhere tightly to the signal, which affects the detection of
the duration of the attack [5]. In our experiments, we found that
both direct envelope thresholding and weakest-effort methods are
unreliable for finding the attack durations of sounds with noisy
attacks (see Section 4).

Hajda [6] was one of the first researchers to propose a theo-
retical model that combines spectral and temporal information to
better characterize the attack-transient, acknowledging the interplay
between these two domains in the perception of musical sounds.

In this paper, we propose a methodology and an algorithm for
the accurate measurement of the attack duration in non-percussive
instruments based on a peculiar time-scale representation. The idea
is to first extract two signals resulting from the separation of the
harmonic ensemble, i.e., the signal composed of all the harmonics
grouped together, from the blowing or bowing noise, the mixing
of which recovers the original signal. The amplitude envelopes of
these two signals can be analyzed to detect relevant events.

In order to achieve an accurate noise / harmonic ensemble
separation we revisit a method based on the Pitch-Synchronous
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Wavelet Transform (PSWT) [7, 8] and introduce improvements
based on interpolation (upsampling) and period regularization based
on local pitch-shifting.

Based on the envelope of the harmonic ensemble, we provide
a new definition of the attack time. Furthermore, based on the
comparison of the harmonic and transient noise envelopes, we
introduce the noise ducking time as the time in which the attack
noise subsides to the sound of the harmonic ensemble, which is
useful for discerning the quality of the attack. Together with the
pitch profile, the detected attack and noise ducking times provide
sufficient time-frequency cues to determine the clarity of the attack
of the produced tones.

Separating the noisy excitation from the resonant component
of the sound also has a pedagogical benefit, since the student can
be presented with acoustic feedback, which could be crucial to
revealing, understanding, and correcting mistakes.

This paper is organized as follows. In Section 2, we analyze
possible application scenarios of reliable methods to estimate the
duration of the attack. In Section 3, we recall wavelet concepts
and multiplexing associated with the PSWT. We also point out
improvements in the resolution of the transform based on signal
upsampling and period regularization by interpolation. In Section
4, we detail our algorithms for the estimation of the duration of the
attack and of the noise ducking time. We also present a consistency
and robustness analysis based on synthetic sounds with known
characteristics. In Section 5, we describe the acquisition of a data
set with quality annotations by an expert, which we used to validate
our algorithm with instrumental sounds. In Section 6, we discuss
the results obtained from the application of our methods to the
attack clarity of the sounds in our and in other available databases.
In Section 7, we draw our conclusions.

2. CASE STUDY DESCRIPTION AND APPLICATIONS

In this paper, we focus on determining descriptors of the transient
attack of isolated monophonic tones produced by wind and bowed
string instruments. The significance of this focus lies in the critical
role that attack-transient characteristics play in the assessment of the
quality of tones [9, 10]. In pedagogical applications, the availability
of an automatic objective quality evaluator is bound to help enhance
the technical skills and expressive capabilities of the students. In
the exploration of musical tones databases, quality features, such as
the duration of the attack and the noise ducking time, can improve
the search for the best match among the recorded tones.

Wind and bowed instruments exhibit attack transient durations
that typically differ from each other [2]. As described in [11],
these durations depend on the physics of the resonator itself, which
cannot react instantaneously to an excitation; rather, vibrations must
gradually build up to reach their full amplitude. This phenomenon
is related to the fact that part of the energy provided externally
to the resonant system is radiated, while another part is absorbed
by the instrument. The attack phase ends when an equilibrium is
reached between the input energy and the total of the absorbed and
radiated energy, allowing the oscillation to attain its quasi-steady
state condition.

Within certain limits, performers can influence the duration of
the starting transient. Different types of articulation (e.g., staccato,
détaché, martelé) are associated with varying rates of transient
development, which musicians can utilize to make stylistic choices
in their performances. Learning to control the type and duration
of the attack thus becomes an important skill for instrumentalists,
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enabling them to select the appropriate attack style required by the
performance context.

A crucial technical aspect that students should master to ex-
press a broad palette of musical ideas is to achieve an attack that is
pure, i.e., uncontaminated by noise or unwanted frequency compo-
nents, and accurate with respect to the desired pitch [12]. It is not
uncommon for beginners to make articulation mistakes that produce
sounds with excessively long attack transients, generally perceived
as unpleasant. For wind instruments, these may include obstacles
to the emission of airflow within the oral cavity, such as diction
errors, suboptimal tongue positioning, incorrect jaw opening, or
an overly constricted throat [13]. For bowed string instruments,
errors can involve inadequate bow pressure on strings, irregular
bow speed, incorrect bow angle, or uneven bow contact with strings,
all of which can disrupt sound production and lead to undesirable
articulation [14].

These considerations underline the need for a tool that provides
a robust and consistent measure of the attack transient duration,
much like how a chromatic tuner is essential for learning to play in
tune, together with a measure of the noise extent. Such an educa-
tional system would offer teachers greater clarity and objectivity
in their instructions and provide learners with objective means to
verify their technique during individual practice sessions. For ex-
ample, an instructor might indicate: “For the next lesson, try to play
the C4 note with an attack duration shorter than 40 ms with piano,
mezzo-forte, and forte dynamics.”

Previous studies have attempted to address this need. The
results of the ML-based model in [1] seem to hint that the features
that are best related to the clarity of the attack of trumpet and
clarinet tones were tonal descriptors deriving from the pitch, while
a temporal property, the duration of the attack, scored the best
for the case of flute tones. However, some mistakes, e.g. pitch
instability during the attack, can be included in data sets more often
than other ones, as blurred or breathy attacks. Thus, the distribution
of various types of playing mistakes in the training data set may well
bias the final score. Moreover, the attack duration estimator used
in [1] may not be adequate for the analysis of noise-driven sounds,
as demonstrated by the example in Fig. 5 in Section 4 and by other
examples or use of the software contained in the companion page
to this paper [15].

In the next section, we start our journey to discuss a new method
for the estimation of attack characteristics based on transient /
harmonic ensemble separation.

3. NOISE + HARMONIC ENSEMBLE DECOMPOSITION

The excitation noise in wind or bowed instruments is wideband,
whereas, when a steady tone is reached, most of the energy con-
centrates in narrow bands centered on harmonic frequencies. A
simple idea to improve the attack duration estimators is to isolate
the resonant signal from the noise. Intuitively, this can be real-
ized by designing two comb filters, one peaking on the harmonic
frequencies and the other one notching these frequencies. Thus,
the output of one of the filters is the signal composed of the har-
monic ensemble and the output of the other is the noisy component.
Clearly, by filtering with the notch comb, we introduce tiny holes in
the spectrum of the noisy component. However, for our purposes,
this spectral alteration of the noise is not critical to the listening
experience or to the extraction of relevant attack parameters. More-
over, in our algorithm for the estimation of the duration of the attack
described in Section 4, we need to detect the time at which a full
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resonance develops, which happens at the end of the attack phase.
To do so, after the note onset we detect the amplitude envelopes
of the separated signals and check when the harmonic component
starts overwhelming the noisy component and when it reaches a
percentage, e.g. —3 dB, of its maximum level.

While comb filters were our basic inspiration, the scheme based
on wavelets that we revisit in this section has many advantages. In
the first place, being realized with multirate filter banks, it fea-
tures a very efficient implementation of high-order comb filters.
Moreover, the whole separation procedure is structured in a series
expansion over a complete and orthogonal set of functions that does
not introduce energy bias. As we shall see, the bandwidth of the
comb filters is controlled by the number of scales we use in the
wavelet transform. Next, we recall basic concepts about wavelets
and outline a comb extension of wavelets.

The Wavelet Transform (WT) [16, 17] is a time-scale repre-
sentation of signals which is equivalent to a time-frequency rep-
resentation on a logarithmic frequency axis. It is mostly useful
for separating transients at several time scales from the average
behavior of signals. Properly sampling in the time-scale plane, one
can arrive at a class of complete and orthogonal sets of wavelets in
L?(R), which are suitable for the wavelet series expansion of any
finite energy signal s(¢):
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— 00
are the wavelet expansion coefficients and <, > denotes the scalar
product in L?(R).

In its canonical form, the wavelet decomposition achieves seg-
regation of constant or nearly constant components from fluctu-
ations from the constant behavior. This is realized by means of
a generalized sum (average) and differences (innovations) encod-
ing scheme based on a multirate pruned tree of Quadrature Mirror
Filters (QMF) leading to band-pass wavelets with band allocation
similar to that of a graphic equalizer (e.g., fractional octave bands).
For the simplest case of octave band (dyadic) wavelets, one has

Ynm(t) =272 "t—m), neN, meZ ()

where ¥ (t) = 10,0(t) is the mother wavelet and, due to their roles,
the indices n and m are respectively called the scale index and the
time-shift index.

In the construction of the wavelet sets one can show the ex-
istence of a low-pass function ¢(t) € L*(R), called the scaling
function, which in our context can be useful to express the residue
of a scale-truncated wavelet expansion:
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is the scale-truncated wavelet expansion and
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is the scaling residue, where
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In the canonical wavelet expansion, the signal s, (¢) in (6)
represents the quasi-constant trend — nearly DC level or deep low-
pass — while sf(t) in (5) represents the fluctuations from the quasi-
constant behavior up to scale index /N. However, with unchanged
form but different wavelets, we are going to change the rules of the
game here.

In fact, for the representation of pitched-tones it is certainly
more useful to segregate the periodic or quasi-periodic trend from
the fluctuations over the periodic trend. In order to achieve that, we
need a modification of the wavelets, which actually results from a
different computational scheme. For convenience, in our discussion
we switch to discrete-time wavelets and signals, equipped with the
scalar product in £%(Z).

If the time period P of the signal is constant, a winning idea is
to arrange all periods in the columns of a matrix, as shown in Fig. 1,
and then compute a canonical wavelet transform along each of the
rows [8]. If the signal were perfectly periodic, then all the columns
of the matrix would be identical, so that each row signal would be
constant. Thus, the band-pass wavelets would not play a role in this
case, leading to zero wavelet expansion coefficients. However, if
the signal is not exactly periodic, then the wavelets will represent
all deviations from the periodic behavior at several time scales.

S|ouUBYd MOJ

s(P-1) | s(2P-1) | s(3P-1) | s(4P-1)

Figure 1: The construction of the matrix of the periods of a
discrete-time pseudo-periodic signal s(n) and the forming of the
row channels to be represented by means of canonical wavelets.

From the flow point of view, the formation of the matrix is
equivalent to demultiplexing the original signal to P channels cor-
responding to the rows of the matrix. Equivalently, one can define
the multiplexed wavelets [8], which already incorporate the multi-
plexing operations and enjoy the same formal structure as in (1 - 8)
but different physical interpretation. In fact, the DTFT &(f) of the
discrete-time multiplexed scaling function is related to the DTFT
®(f) by P-fold shrinking:

o(f) = (Pf) ©)

Since the scaling function of the canonical wavelets is low-pass,
due to the periodicity of the DTFT the scaling function for the
multiplexed wavelets is a comb covering the harmonics of the
signal. Given the sampling rate f,, the bandwidth BW°" of
each tooth of the harmonic comb at scale level N is

BWE" = 2£SP (10)
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which can become very narrow as IV increases. As shown in Fig. 2,
the multiplexed wavelets are also comb-shaped, but their teeth peak
on sets of sidebands of the harmonics. These sidebands become
narrower and closer to the harmonics as the scale index n grows.
Scale-truncation of the multiplexed-wavelet expansion achieves
the separation of the noisy excitation — the signal s#(¢) in (5) — from
the resonant part or harmonic trend — the signal s, () in (6), which
is required for our attack duration estimator and for the presentation
of the acoustic feedback of the excitation for pedagogical purposes.
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Figure 2: Magnitude Fourier Transforms of scaling function and
comb wavelets at several scales.

Things become a little wilder when the local period of the signal
is not constant and one truly needs to compute a Pitch-Synchronous
Wavelet Transform (PSWT) with variable pitch. Two main modes
were presented in [7], in which the shorter periods were either zero-
or constant-padded to form a matrix whose columns are the size of
a pre-assigned or calculated maximum period. The extra samples
are subsequently deleted in the final reconstruction.

3.1. Improvement of the PSWT

In this work, we successfully experimented with a new technique,
which is essentially based on time warping. Prior to multiplexed
wavelet analysis, which can then be carried out with constant pitch,
we stretch each period to a maximum period using interpolation
based on polyphase anti-aliasing filters [18]. In the synthesis, we
decimate the periods back to their original lengths, again with
polyphase anti-aliasing filters. Since in the synthesis we separate the
wavelet contribution (noisy component) from the scaling residue, it
is necessary to perform period decimation separately on these two
signals.

Another improvement to the PSWT based method that we
carried out in our experimentation is to up-sample the signal prior to
pitch detection and wavelet analysis. Since we based pitch detection
on a sliding-window autocorrelation method, the estimated period
is an integer approximation of the true period. Up-sampling has a
mitigating effect on the quantization of the period estimate, which
makes the separation of the noisy components of the signal from the
resonant part much more accurate. In fact, in the frequency domain,
the scaling function forms a comb tuned to the pitch of the tone
that is supposed to trap all the harmonics. In case of mistuning, the
higher harmonics could fall out of the harmonic comb and end up in
the territory of the wavelets, i.e., in sidebands of the harmonics, thus
contributing to the fluctuations component, which is an undesired
behavior.

In general, the number of scales /N at which one truncates the
wavelet analysis is also limited by mistuning: at lower N the teeth
of the comb are less narrow so they are more keen to cover the
harmonics, but this also means that more energy from the noisy
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component would be covered by the scaling residue and not by the
wavelets. Therefore, more accurate tuning achieves deeper analysis
and better segregation of the components.

Upsampling the signal by factor 10 adds a decimal point to the
resolution of the period estimate. Here again we used polyphase
filter interpolation. We were able to achieve great segregation
pushing the number of scales to 4-5 for most sounds in our data set
and in other public databases.

It must be pointed out that, while vibrato can and must be toler-
ated, erratic pitch variations as in the sounds typically produced by
beginners are considered to be mistakes which, besides being de-
tected by the pitch instability indicator, can be heard in the acoustic
presentation of the noisy signal sound. Since a pitch detection and
tracking module is embedded in our PSWT-based attack duration
estimator, the pitch profile is easily displayed and pitch instability
measures, such as the pitch STD, are easily computed, once we
remove the outliers [1]. We use these features to complement our
attack duration estimate in determining the clarity of attacks.

The pitch estimation we used in conjunction with the PSWT is
period synchronous, where a detection frequency range is preset.
A window of length equal to 2-3 maximum periods is sliding on
the signal by an amount equal to the last detected period. When
no pitch is detected, the maximum frequency, corresponding to
the minimum period, is outputted as an outlier “pitch” of the cur-
rent signal segment. Therefore, pure noise samples are arranged
into short segments that are then stretched by interpolation to the
maximum period length P, before ending up in columns of the
demultiplexing matrix 1. However, since the samples of adjacent
noise segments greatly differ from each other and from subsequent
pitched periods of the signal, they are mostly picked up by the row-
channel wavelets and do not contribute to the row-channel scaling
residue, which is in line with our separation idea.

A block diagram of the complete procedure to extract the noisy
and resonant parts of the signal is shown in Fig. 3. Sound ex-
amples of noise-resonance segregation in various tones of natural
instruments and synthetic sounds can be found in [15].

3.2. Complexity

The multiplexed wavelet analysis-synthesis block has linear com-
plexity in terms of the number of samples and, in principle, can
be computed in real time using FIR QMF filters. Clearly, up-
sampling and period interpolation increase the complexity factor
and introduce further latency. In our foreseen applications, either as
feedback for the student musician or in database quality indexing,
real-time is not a strict requirement. Our off-line interpreted Matlab
implementation running on a basic M2 ARM CPU laptop with
8GB RAM, including signal up-sampling/down-sampling factor of
4, autocorrelation-based pitch detection, pitch regularization, and
the computation of 5 multiplexed analysis/synthesis wavelet scales
rooted on order 9 Daubechies’ QMF filters [16], runs slightly faster
than real time, within a time factor of 0.875. The system lags behind
real-time when the up-sampling/down-sampling factor is increased.
For reference, when increasing this factor to 10 the computation in
Matlab requires double the time required by real-time operation.

4. ATTACK DURATION ESTIMATION ALGORITHM

The accurate estimation of the duration of the attack transients in
musical sounds, particularly for noise-driven harmonic instruments
such as wind and bowed string instruments, presents a significant
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Figure 3: Block diagram of the PSWT-based separation of noisy and resonant parts.

challenge due to the presence of the excitation noise, which, in
some cases, overshoots above the steady-state oscillation. For these
instruments, the sound can be characterized as pseudoperiodic,
exhibiting a clear harmonic structure only once the note is fully
developed.

In this section, we propose a novel algorithm that leverages the
pseudoperiodic nature of harmonic instruments to reliably estimate
the duration of the attack transient. The suggested algorithm is de-
signed for isolated monophonic pseudoharmonic sounds, which are
characterized by three distinct segments as follows: initial silence,
noisy attack transient, and fully developed sound in steady state.
Estimation of the duration of the attack can take great advantage of
the separation of the noisy component from the harmonics, which
simplifies the detection of the onset of periodic behavior, i.e., the
end of the attack phase. The proposed method relies on the separa-
tion of signals based on the PSWT and its improvements described
in Section 3.

We detect the amplitude envelopes of the two signals, e (t)
for the harmonic content of the sound and e(¢) for the noisy
fluctuations associated with the attack transient. We experimented
with various methods to extract the envelopes and to interpolate
them and we found that the classical sliding-window maximum
method with linear or spline interpolation gives the best results for
its adherence to the signal dynamics, when the window length is
tuned to approximately one period of the signal.

We detect the onset time t,, of the tone as the instant when
the amplitude of the input signal lies for the first time above a
threshold A;;,. The minimum useful threshold level depends on
the Signal-to-Noise Ratio (SNR) of the recording and is estimated,
with a margin, from the recording of the silence preceding the
note. Depending on the instrument and play mode, during the
attack transient the amplitude associated with the fluctuations can
be significantly higher than that of the harmonic signal.

At the end of the attack phase, the amplitude envelope of the
harmonic ensemble attains higher levels. We detect the attack offset
t,sr when the level of the harmonic signal reaches a fraction o of
its maximum value. In other words, given the envelope ey, (t) of
the harmonic ensemble signal s (¢) and the input signal s;», (), we
have:

ton = rntin{t 2 sin(t)| > Aur}
tofr = mtin{t cen(t) > ar}
dW = toff — ton

amn

where 7 = max; ep(t) and dW is the wavelet-based estimation of
the attack duration time. A block diagram showing the computation
flow for the estimate of the duration of the attack is shown in Fig. 4.
In most of our experiments, we let o = 1073/2% ~ 70.8% which
yields a 3 dB attenuation, but, in specific applications, « can be
considered as a free calibration parameter.
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Figure 4: Block diagram of the attack duration estimator dW by
means of PSWT based separation.

An example of attack duration estimate that illustrates the ad-
vantage of applying our PSWT-based method is shown in Fig. 5.
There, a trumpet sound signal is plotted in which the initial exci-
tation noise peak is higher than the steady-state amplitude. The
classical method, also included in the early versions of TT [4],
defines the attack time as the duration of the interval from ¢,, until
the instant in which the maximum amplitude is reached. This crite-
rion clearly fails for the signal in Fig. 5 since the maximum of the
signal envelope occurs at the very beginning and is purely due to
excitation noise during the attack phase.

In Fig. 5, superimposed on the input signal are the estimates
en(t) (red curve) and ey (t) (yellow curve) of the envelopes for
the harmonic and noisy components, respectively. The envelope
er(t) correctly ignores the initial noisy transient and reaches the
maximum roughly when the steady-state part of the sound begins.
By thresholding ey (t), the duration of the attack was correctly
estimated at 182 ms, which makes more sense than the estimates
for ¢, provided by thresholding the original envelope (‘x’ mark in
the figure) and by means of the weakest effort method (‘o” mark in
the figure), both of which occur when the attack is still in the noisy
transitory part.

The detected ¢, is only slightly larger than that of typical
well-rated attacks (<160 ms). However, an additional quantity
derived from the separated signals can help in assessing the clarity
of the attack: the noise ducking time t,q. We define this as the
instant at which the initial attack noise starts to be overtaken by the
harmonic components. A strategy for evaluating ¢, that works for
a large class of tones is to detect the maximum of e (¢) and then
find the first subsequent instant where e (¢) falls below ey (¢) by a
prescribed amount, which we set at 3 dB in our experiments. If the
largest peak of the noisy component is not prominent, i.e., if it falls
below a prescribed threshold, which we fixed in our experiments at
15 dB below the maximum of ey, (), then we set t,4 as the instant
in which ey, (t) reaches an amplitude that is 3 dB above e (¢). The
justification of this conditional approach is to prevent that false
detection of ¢, is triggered at the very onset of the signal even
when the noise amplitude later reaches a high level.

In some sounds with badly rated attacks, such as growling wind
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Figure 5: Trumpet sound signal, time-shifted so that ¢,, = 0. The
estimate of the attack duration ¢,/ obtained by thresholding the
envelope ey, (t) (red curve) of the harmonic part is shown by a thick
black vertical line. The estimates of ¢,; obtained by means of
direct thresholding (3 dB below max; e(t)) and the weakest-effort
methods are also shown, respectively, by means of a cross (x) and a
circle (o) mark above the input signal envelope e(t). The envelope
e (t) (yellow curve) of the fluctuation components is also shown,
which peaks right after the onset of the signal. An estimate of the
noise ducking time ¢,q is shown, which delimits the end of the
noisy part of the attack.

sounds or string tones played with wrong bow pressure, the initial
attack is actually short and clean, but a noisy phase is initiated
immediately after it. In such cases, the value of ¢, is not decisive,
but large ¢, allows us to detect a prolonged noisy activity. The ¢4
detected for the signal in Fig. 5 is 94 ms, while clean attacks show
much shorter noise ducking times (/= 20 ms). Further examples of
attack analysis and data tables can be found in [15].

4.1. Consistency and Robustness

In order to test the consistency and robustness of the PSWT-based
estimate of the attack duration time and compare our method with
existing ones, we generated and analyzed synthetic signals: sinu-
soids, band-limited square, sawtooth, and triangular waves together
with a trumpet-like sound obtained from its first 10 Fourier coef-
ficients. All sounds were corrupted by time-enveloped Gaussian
random noise. In order to simplify our analysis, we used trapezoidal
envelope shapes for both noise and signals, where the envelope of
the noise largely covers the attack phase of the signal. In our tests,
we set several values of the Signal-to-Noise Ratios (SNR), defined
as 20 log, , of the ratio between the signal level and the noise level
in the flat and overlapping part of the envelopes. We also included
the possibility to introduce vibrato by frequency-modulating the
waves.

Given that the envelopes that we impose are programmable,
it is easy to assess the duration of the attack phase from them. In
order to estimate statistics of the measurement, we fed the estima-
tion algorithms — PSWT-based, input envelope thresholding, and
weakest-effort methods — sets of 100 test sounds of the same wave
type but corrupted by different samples of statistically independent,
equally amplitude enveloped, white noise. For each method, we
plot the histogram and extract the mean p and the standard devi-
ation o of the measured samples of ¢,sr, an example of which is
shown in Fig. 6. Due to the way it is defined, it is natural that the av-
erage estimates of the duration time obtained by the weakest-effort
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Figure 6: Histograms of the estimates of the duration of the attack of
a noise-corrupted square wave synthetic sound, where dW denotes
the estimate using the PSWT-based method, dT the estimate by
means of input signal envelope thresholding, and dTeff by means
of the weakest-effort method.
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Figure 7: Behavior of the standard deviations 4w and oqr for
measures of the duration of the attack based on wavelets and on
input envelope, respectively, using square wave synthesis and noise
at increasing SNR. The curve described by a decreasing exponential
fit of oqw is also plotted.

method may differ from those of the other two methods, but its high
standard deviation is of concern, which shows that the method is
not very robust; as such, we will not consider it further.

Example behaviors of the standard deviation ogqw as SNR
grows for the wavelet-based method and o 47 for the input envelope
thresholding are reported in Fig. 7. We can see that the standard de-
viation of the PSWT-based method, which exponentially decreases
as the SNR increases, is always much smaller than that of the
classical direct thresholdung method.

To test the consistency and robustness of the estimation algo-
rithm for ¢,4, we performed statistical tests using synthetic sounds
in which the noise envelope is a short linearly or exponentially de-
caying pulse, which overlaps with the attack of the trapezoidal wave
envelope. Across all our synthesizers and various predetermined
noise ducking times, the relative standard deviation (RSTD), i.e.
the STD divided by the mean, always resulted less than 10% and
the mean remained within a few milliseconds of the programmed
value for t,4.

Further examples of estimated statistics using synthetic sounds
with and without vibrato can be found in [15].

5. DATA SET

To evaluate the use of the proposed algorithm for the analysis of
instrumental sounds, a specific data set of isolated monophonic
trumpet tones was recorded using high-end audio equipment in a
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soundproof booth to minimize ambient noise and external interfer-
ence. The microphone was positioned 50 cm in front of the bell of
the trumpet, aligned at the same height and facing the instrument.
This placement remained constant throughout the sessions to ensure
consistency in the recordings.

The performer was a professional musician with a degree in mu-
sic performance and a professional background in music education.
The musician played isolated tones throughout the primary range of
the trumpet, specifically targeting the notes Bb3, D4, F4, Bb4, D5,
and F5. These pitches were chosen to cover a representative spec-
trum of the instrument range. For each selected note, the performer
was instructed to play multiple tones, exhibiting both good and
poor attack clarity. The poor attack-clarity sounds were intended
to simulate common articulation errors made by novice players.
No specific dynamic levels were imposed. After recording, the
musician provided annotations for each selected sample, focusing
on four main characteristics associated with poor attack-clarity:

* Noisy attack: The attack contains noticeable noise, perceived
as a prolonged crack-like sound at the onset, like the sound
in Fig. 5, which is taken from our data set.

* Delayed stabilization of pitch: The onset begins on a dif-
ferent harmonic than the intended pitch before settling into
the intended note, resulting in distinct transient sounds de-
pending on whether the onset starts on a higher or lower
harmonic. Although playable notes in the harmonic series
of trumpet resonances are equally spaced in frequency, this
issue is more prevalent in the high register since the corre-
sponding distance in cents or fractions of half-tones becomes
smaller as the series ascends, requiring higher onset pitch
precision.

* Delayed stabilization of resonance: The sound starts muffled
and unstable before reaching a more resonant timbre, creat-
ing a characteristic “ti-OH” effect in the attack discussed in
the pedagogical literature [13].

* Attack with breath noise: Despite tonguing, the sound does
not start immediately; instead, there is an audible breath-
ing noise as air passes through the instrument before the
vibration begins uncontrollably late.

Our data set [15] comprises 149 labeled sounds, each annotated
according to the identified attributes. It is important to note that
individual recordings may exhibit more than one of these charac-
teristics simultaneously. Although limited in size, the data set was
instrumental in the development of the attack duration estimation
algorithm described in Section 4, especially useful to attribute a
physical meaning to the attack phase, which is absent from other
definitions devised for generic signals.

6. RESULTS AND DISCUSSIONS

In this section, we analyze the performance of the proposed attack
duration estimation method across different types of attack tran-
sients of the collected trumpet data set. The results are discussed in
terms of the estimated attack duration and noise ducking time, as
these are found to be the salient features.

Good attacks generally show a harmonic envelope that in-
creases quite rapidly and linearly until it reaches a flatter region.
The onset of the note is characterized by a short peak of the enve-
lope of fluctuations, likely due to the tongued attack, before the
envelope then sets to lower levels. The estimated ¢,4 is very small

116

as the harmonic envelope soon prevails. Depending on the slope of
the attack, the estimate of ¢, can reach a range of values that are
generally smaller than in attacks of lower clarity.

In noisy attacks, the estimated ¢,z is generally only slightly
higher than in cleaner articulations. Here, ¢, emerges as the main
discriminant, showing values significantly higher than in cleaner
articulations. As illustrated in Fig. 5, the separation of the noisy
excitation from the harmonic ensemble prevents false detections of
the termination of the attack, which are induced by transient noise
peaks in the original signal envelope. This is a net improvement
over the TT detection methods.

In attacks with delayed stabilization of resonance, the harmonic
envelope exhibits an initial lower amplitude, increasing until the
sound stabilizes. The algorithm accurately reflects this transition,
associating these cases with larger estimates of both ¢, and ¢,4.
Since the transient development occurs within a much shorter time
scale, this behavior is distinct from a deliberate crescendo.

In attacks with breath noise, an onset detection algorithm based
on a dynamic threshold estimated during silence ensures that the
breath noise is not misclassified as background noise. Both ¢,z and
tnq are generally higher in this case.

Since the harmonic envelope may temporarily stabilize on an
unintended pitch, the attacks with delayed stabilization of pitch do
not necessarily correspond to larger t,s and/or t,4. This type of
attack error is perceptually salient and can be easily identified by
observing large standard deviations of pitch.

We also tested our algorithms on a wider set of recordings
using the Good-sounds data set [19], which includes a collection
of isolated tones of wind and bowed string instruments with a
substantial number of partially annotated examples of correctly
played notes and notes with attack errors. Among the annotated
errors, some instances included brief descriptions of the type of
attack issue, while others were generically labeled “bad attack”.

Unfortunately, we could not find a systematic classification
of attack mistakes across different instruments in the literature.
However, we suggest that, based on the temporal evolution of the
noise and of the harmonic ensemble rather than on the physical
mechanism of sound production itself, the classification developed
for trumpet attacks could be extended to other instruments. For
example, a violin sound with a noisy attack due to incorrect bow
pressure (see Fig. 8a) is physically distinct from a noisy attack of
a trumpet caused by improper embouchure articulation. However,
both exhibit similar behavior in terms of the interaction between the
noise and the harmonic components. The analysis of a flute sound
with a breathy attack is shown in Fig. 8b, which shows high values
of characteristic times. Further examples shown in [15] for wind
and bowed string instruments illustrate how the proposed attack
duration estimation and noise ducking time have a broader appli-
cability to describe the transient attack characteristics of various
categories of musical instruments.

Despite variations in absolute attack times across different
instruments, our algorithm consistently produce values for two
parameters, t,s and t,4, which allow us to distinguish properly
executed attacks from faulty ones. The results confirm that the
integration of both temporal and spectral information is essential
for accurately analyzing transient behaviors in instrumental sounds.

7. CONCLUSIONS

In this paper, we introduce a new method to estimate the duration
of the attack of nonpercussive instruments for which, due to the
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Figure 8: (a): Analysis of a violin sound with noise produced by
the incorrect pressure of the bow on the string, showing a large
value of ,4; (b): Analysis of a flute sound with a breathy attack,
showing a large value of both ¢,/ and ¢,,4.

excitation bow or blow noise, the classical direct estimate and the
weakest-effort method are not sufficiently robust. Our method
is based on an excitation/resonance separation by means of an
improved PSWT. The consistency and robustness of our proposed
algorithm were checked by statistical trials conducted on synthetic
sounds. Qualitative checks and musical interpretation could be
performed in the specially created data set and other available
databases. The uses in database indexing for tone-quality related
queries and in self-assisted music practice were pointed out.

Further work will extend our data set and interpretation to a
broader class of instruments with annotations by experts. Further-
more, since the attack times may vary for each harmonic of the tone,
we will explore the use of the Harmonic-Band Wavelet Transform
(HBWT), essentially a PSWT where multiplexing is replaced by a
Discrete-Cosine Transform (DCT) [20].
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