
Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

FAST DIFFERENTIABLE MODAL SIMULATION OF NON-LINEAR STRINGS,
MEMBRANES, AND PLATES

Rodrigo Diaz and Mark Sandler ∗

Centre for Digital Music
Queen Mary University of London, UK
r.diazfernandez mark.sandler

ABSTRACT

Modal methods for simulating vibrations of strings, mem-
branes, and plates are widely used in acoustics and physically
informed audio synthesis. However, traditional implementations,
particularly for non-linear models like the von Kármán plate, are
computationally demanding and lack differentiability, limiting in-
verse modelling and real-time applications. We introduce a fast,
differentiable, GPU-accelerated modal framework built with the
JAX library, providing efficient simulations and enabling gradient-
based inverse modelling. Benchmarks show that our approach
significantly outperforms CPU and GPU-based implementations,
particularly for simulations with many modes. Inverse modelling
experiments demonstrate that our approach can recover physical
parameters, including tension, stiffness, and geometry, from both
synthetic and experimental data. Although fitting physical param-
eters is more sensitive to initialisation compared to methods that
fit abstract spectral parameters, it provides greater interpretability
and more compact parameterisation. The code is released as open
source to support future research and applications in differentiable
physical modelling and sound synthesis.

1. INTRODUCTION

The accurate modelling of vibrating structures, such as strings,
membranes, and plates, is crucial to many areas, including acous-
tics, musical instrument design, and physically based audio syn-
thesis. These systems are governed by partial differential equa-
tions (PDEs) derived from first principles. However, solving these
PDEs analytically is possible only in a few specific cases. In prac-
tical settings, we therefore rely heavily on numerical approaches,
each with distinct strengths and weaknesses.

Finite-difference time-domain (FDTD) methods are often used
due to their explicit numerical formulation, discretising both time
and space with finite differences. While intuitive and versatile,
FDTD simulations often face significant limitations, such as nu-
merical dispersion, restrictive stability conditions, and computa-
tional inefficiency, particularly for high-resolution applications [1].

Modal methods provide a different perspective by projecting
the problem onto a carefully chosen set of orthogonal basis func-
tions, transforming the PDE into a collection of simpler ordinary
differential equations (ODEs). This approach offers advantages by
naturally capturing the vibration modes of the system and reducing
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computational complexity. However, a significant challenge with
modal methods is identifying appropriate basis functions, as these
are dependent on the domain geometry and boundary conditions.
Since analytical bases are available only for a limited number of
simple cases [2], extending modal approaches to more complex
scenarios remains difficult.

Additionally, traditional numerical methods, including most
modal approaches, are generally implemented without automatic
differentiation, complicating the computation of gradients with re-
spect to physical parameters. This limits their practical use for
modern inverse modelling and gradient-based parameter estima-
tion tasks, which are increasingly common in physically informed
machine learning and audio synthesis. Furthermore, existing im-
plementations typically run on CPUs, making them computation-
ally inefficient for larger or non-linear problems, such as simula-
tions involving the von Kármán plate model.

To address these challenges, this paper introduces a fast and
differentiable GPU-accelerated framework for modal simulations
of strings, membranes, and plates. Our implementation leverages
the JAX library to enable efficient computation and automatic dif-
ferentiation, making gradient-based optimisation directly accessi-
ble for parameter estimation, inverse modelling, and sound synthe-
sis.

• Scalable computational efficiency: Our GPU-based im-
plementation significantly outperforms existing CPU and
GPU implementations, especially for simulations involv-
ing many modes, making large-scale dataset generation and
real-time applications feasible.

• Unified and accessible implementation of multiple mod-
els: Our framework provides a single, user-friendly Python
interface to simulate strings, membranes, and plates, in-
cluding non-linear models like the von Kármán, Berger and
Kirchhoff-Carrier models.

• Physically interpretable inverse modelling: We demon-
strate inverse modelling by optimizing directly for phys-
ical parameters (e.g., tension, stiffness, geometry), rather
than traditional spectral parameters (poles and zeros). Al-
though this adds complexity due to increased constraints
and sensitivity to initialization, it significantly improves in-
terpretability and compactness of representation.

The open-source implementation provided with this paper con-
nects classical physics-based modelling with modern automatic
differentiation and GPU acceleration techniques. It offers audio
researchers and practitioners an accessible, efficient, and inter-
pretable tool for real-time synthesis, instrument design, and phys-
ically informed machine learning.
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2. RELATED WORK

The simulation and modelling of strings, membranes, and plates
has been extensively studied in acoustics and musical instrument
research. Notably, the work of Bilbao [3] provides a comprehen-
sive numerical treatment of such systems, primarily focusing on
finite difference time-domain (FDTD) approaches. These meth-
ods discretise space and time, approximating derivatives using fi-
nite differences, and have been widely applied to the simulation of
musical instruments and other acoustical systems. While FDTD
methods are flexible and conceptually straightforward, they suffer
from numerical dispersion and have restrictive stability conditions
(e.g., CFL) that demand very small time steps. These constraints
make high-frequency simulations or simulations involving large
spatial domains computationally expensive. Recently, techniques
like the Scalar Auxiliary Variable (SAV) method have also been
introduced, primarily within FDTD frameworks, to improve the
efficiency and stability of handling non-linear terms by avoiding
implicit equations [4, 5].

Alternatively, modal approaches have been explored in dif-
ferent ways. Pseudospectral methods, which exploit Fourier de-
compositions, have been used for the simulation of the tension
modulated string [6]. Another significant modal approach is the
Functional Transformation Method (FTM), introduced by Traut-
mann and Rabenstein [2]. This technique relies on analytical spa-
tial modes and the Laplace transform. By applying both transfor-
mations, the PDE becomes a set of transfer functions, which are
then discretised and used in a numerical time integration scheme.
However, analytical modal expansions exist only for specific ge-
ometries and boundary conditions. Subsequent work has focused
on the treatment of more complex boundary conditions [7]. In
parallel, efficient tension-modulated modal models for strings and
membranes have also been developed in the work of Avanzini and
Marogna [8, 9].

In the specific context of plates, the non-linear von Kármán
model has been extensively studied through modal formulations.
The work of Duccheschi and Touzé [10, 11] addresses this non-
linear model, particularly for the simply supported boundary con-
dition. While the transverse (out-of-plane) vibration modes can be
derived analytically for some cases, accurately capturing the non-
linear coupling with in-plane modes typically requires a Galerkin
type approach. Such methods select appropriate basis functions for
projection onto a system of ODEs with coupling coefficients, en-
abling efficient numerical integration despite increased complexity
due to non-linear mode coupling.

In recent years, differentiable and neural-based approaches
have emerged, primarily targeting rigid-body simulations [12, 13,
14]. Although many of these methods are primarily data-driven
(rather than physics-based), they often leverage principles similar
to classical modal expansions. In [15], non-linear modes are com-
puted using gradient descent, and these modes are then evolved
linearly, with a second neural network refining the dynamics to
account for non-linear interactions. Similarly, Lee [16] proposes
using analytical (or alternatively learnt) modes as a basis, modu-
lating them with neural networks to model pitch glide and non-
linear coupling effects. Alternatively, operator learning methods,
such as the Fourier Neural Operator (FNO) [17], have also been
applied within recurrent neural networks [18] for the simulations
of strings and membranes. Collectively, these hybrid approaches
highlight the potential benefits of integrating physics-based modal
techniques with neural methods.

Our framework remains entirely physics-based and does not
depend on neural networks for modelling. Instead, we imple-
ment traditional modal formulations in a unified, differentiable
manner, leveraging automatic differentiation and GPU accelera-
tion to improve computational efficiency. Due to its differentiabil-
ity and modular design, the framework can readily be combined
with neural networks if desired, enabling hybrid physics-based
and data-driven approaches. By offering accessible implementa-
tions of tension-modulated string, membrane, and von Kármán
plate models, our method simplifies gradient-based inverse mod-
elling and efficient differentiable simulations, effectively bridging
classical modal techniques with modern automatic differentiation
methods.

3. BACKGROUND

Assuming uniform material properties, the governing equations for
the tension-modulated string, membrane, and von Kármán plate
with tension can be written as:

ρẅ + (d1 + d3∆) ẇ + (D∆∆− T0∆)w = fext − fnl, (1)

where w is the transverse displacement, ρ is the mass per unit
length or area, d1 and d3 are the damping coefficients, D is the
bending stiffness, T0 is the initial tension, fext is the external force
and fnl is the non-linear term. ∆ and ∆∆ stand for the Laplacian
and biharmonic operators, respectively.

For the modal approach, a suitable set of eigenfunctions must
be found by solving the spatial eigenvalue problem:

∆Φµ = −λµΦµ, (2)

where Φµ is the µ-th eigenfunction and λµ is the corresponding
eigenvalue.

In general, analytical solutions for these eigenpairs are known
only for simple geometries and boundary conditions. For more
complex scenarios, numerical methods such as the Finite Element
Method (FEM) or other Galerkin-type approaches are typically
employed.

In the linear case, the non-linear term fnl in eq. (1) vanishes
and the equation can be solved as a system of uncoupled ODEs.
In the tension-modulated case, that is the Kirchhoff-Carrier model
in the case of a string and Berger model in the case of a mem-
brane, the non-linear term arises due to the tension caused by the
deformation of the string or membrane [8, 19, 3]:

fnl = Tnl∆w, (3)

Tnl = τ

∫
D
||∇w||2dx (4)

where D is domain length or area and τ is a scalar dependent on
the physical parameters of the string or membrane1:

τstring =
EA

2L
, τmembrane =

Eh

2LxLy(1− ν2)
(5)

where E is the Young’s modulus, A is the cross-sectional area, L
is the length of the string, h is the thickness, Lx and Ly are the
length and width, and ν is the Poisson’s ratio.

1For brevity we focus on the rectangular membrane however the same
principle applies to the circular membrane.
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For the von Kármán plate, nonlinearities emerge from the cou-
pling between transverse and in-plane modes [10, 11]:

fnl = −L(w,φ), (6)

∆∆φ = −Eh

2
L(w,w), (7)

where L is the von Kármán operator defined as:

L(f, g) = ∆f∆g −∇∇f : ∇∇g, (8)

and φ is the Airy stress function.

3.1. Modal expansion of the non-linear term

For tension-modulated strings and membranes, the non-linear term
expanded in modal coordinates is given by:

f̄µ,nl = λµqµτ

(∑
µ

λµq
2
µ

||Φµ||2

)
, (9)

where qµ is the amplitude of the µ-th modal coordinate.
For the von Kármán plate, both the transverse modes Φµ and

in-plane modes Ψµ must be considered. The non-linear modal
expansion then becomes:

f̄µ,nl =
E

2ρm||Φµ||2
n∑

p,q,r

Hn
q,rC

s
p,n

ζ4n
qpqqqr, (10)

where Hn
q,r and Cs

p,n are third-order tensors with the coupling co-
efficients obtained from the projections between the modes:

Hk
i,j =

∫
S
ΨkL (Φi,Φj) dS

∥Ψk∥ ∥Φi∥ ∥Φj∥
, (11)

Cs
i,j =

∫
S
ΦsL (Φi,Ψj) dS

∥Φs∥ ∥Φi∥ ∥Ψj∥
, (12)

where Ψ and ζ4 are the eigenfunctions and eigenvalues obtained
from the separate eigendecomposition of the Airy stress function
φ. Note that the ρm denominator in eq. (10) is the mass density and
not the material density ρ = ρmh. For a more detailed derivation
of the modal expansion of the non-linear term, we refer the reader
to [10, 11].

3.2. Integration in time

Expressing Equation (1) in modal coordinates yields a system of
ODEs describing individual modes as damped harmonic oscilla-
tors:

q̈µ + 2γµq̇µ + ω2
µqµ = f̄µ,ext − f̄µ,nl, (13)

where the coefficients are given by:

ω2
µ =

Dλ2
µ + T0λµ

ρ
, (14)

γµ =
d1 + d3λµ

2ρ
. (15)

One possible solution to the ODEs in Equation (13), following
the FTM approach, is to use the Laplace transform and the impulse
invariance discretisation to yield discrete transfer functions:

Hµ(z) =
bµ,1z

z2 + aµ,1z + aµ,2
, (16)

aµ,1 = −2e−γµT cos(ω̃µT ), (17)

aµ,2 = e−2γµT , (18)

bµ,1 =
ρ−1 sin(ω̃µT )

ω̃µ
e−γµT , (19)

with ω̃µ =
√

ω2
µ − γ2

µ, which yields the following update scheme
for all the modes q = [qµ]

M
µ=1 ∈ RM :

qn+1 = a1 ⊙ qn + a2 ⊙ qn−1 + b1(f̄
n
ext − f̄nnl), (20)

A similar second-order approach is to use Störmer-Verlet [20] di-
rectly on eq. (13). Discretising the ODE in time using centered
finite differences we obtain the following update rule:

qn+1 = g ⊙ qn + p⊙ qn−1 + r⊙ (f̄next − f̄nnl), (21)

where g,p, r are vectors of coefficients obtained from the time
discretisation for each µ-th mode:

rµ =
2T 2

2 + 2γµT
(22)

gµ = rµ

(
2

T 2
− ω2

µ

)
(23)

pµ = rµ

(
− 1

T 2
+

2γµ
2T

)
, (24)

In both cases, f̄next and f̄nnl denote the modal coordinate vectors
of external forces and non-linear terms, respectively, and T de-
notes the sampling period. While higher-order integration schemes
could be employed for improved accuracy, we choose second-
order methods due to their computational efficiency. Figure 1 com-
pares the numerical errors of these second-order schemes against
a reference solution computed with an eighth-order Runge-Kutta
integrator (DOP853).
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Figure 1: Error comparison between numerical integration meth-
ods. Top: Simulation of the tension-modulated string from ini-
tial conditions using DOP853 (RK), the FTM-based method (TF),
and the Störmer-Verlet method (SV). Bottom: Error computed as
the magnitude STFT difference between each method and the ref-
erence DOP853 integrator. The simulation was performed for a
tension-modulated string with 40 modes.
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4. METHOD

4.1. Implementation

We implemented the framework in Python using JAX [21] which
enables efficient, GPU-accelerated simulations with automatic dif-
ferentiation. The full source code for all experiments, benchmarks,
and figures presented in this paper is available at: https://
github.com/rodrigodzf/jaxdiffmodal as well as an
accompanying website for documentation and usage of the frame-
work.

The open source repository includes utilities for computing
analytical modes and eigenvalues of fixed strings, membranes and
plates. For plates, we provide a Python implementation of the
approach described in [11] to compute non-linear coupling coef-
ficients2. To support arbitrary boundary conditions, we use the
magpie-python library3 together with a reimplementation for
processing numerical modes based on4.

The framework includes differentiable implementations of the
time integration schemes discussed in Section 3, along with tools
for modal to physical domain transformations, transfer function
computation, and visualisation. All components are modular and
designed to support easy experimentation and extension.

4.2. Benchmarks

A key motivation for this work is to develop a high-performance
simulation framework for non-linear models, particularly aimed
at efficient large-scale dataset generation. To evaluate computa-
tional performance, we benchmark our Störmer-Verlet time in-
tegration approach (computationally equivalent to the discretised
FTM method) for the von Kármán plate model implemented in
JAX against three alternative implementations: a MATLAB ver-
sion, an optimised C++ implementation using the Eigen library
with BLAS support, and a JIT-compiled PyTorch implementation.
This comparison is particularly challenging due to the tensor con-
traction (in Equation (10)) required at each time step. As shown in
Figure 2, while our JAX-based approach is moderately slower than
the MATLAB and C++ implementations for smaller mode counts
(⪅ 50), it demonstrates better efficiency as the number of modes
increases. It also substantially outperforms the optimised PyTorch
implementation running on the GPU. Notably, for the von Kármán
plate model with approximately 100 modes, our implementation is
the only one capable of achieving roughly twice real-time perfor-
mance for a one-second simulation at a 44,100 Hz sampling rate.

All benchmarks were performed on a system with an AMD
Ryzen 9 5900X CPU, an NVIDIA GeForce RTX 3090 GPU, and
64GB of RAM, using single-precision floating point.

We also developed a custom CUDA kernel implementation,
but it is not included in the benchmark results as it proved unex-
pectedly slower than the other approaches.

4.3. Experiments

We present three experiment groups designed to evaluate the dif-
ferentiability and effectiveness of our framework for inverse mod-
elling. These experiments assess the ability of our method to iden-
tify and optimise physical parameters for strings and plates using

2https://vkgong.ensta-paris.fr
3https://github.com/Nemus-Project/magpie-python
4https://github.com/Nemus-Project/VKPlate
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Figure 2: Benchmark comparison of different implementations.
Top: von Kármán plate model, Bottom: tension modulated plate
model (Berger). Performance is measured for simulations of 10,
50, and 100 modes, each running for 1 second at 44,100 Hz. A
dotted line is shown to indicate real-time performance, above the
line is slower than real-time. Results are displayed as box plots
obtained from 50 repeated runs per configuration.

both synthetic simulations and real-world measurements (mainly
for linear cases).

4.3.1. Loss functions and setup

For inverse modelling of physical parameters, we employ a com-
posite loss function based on spectral differences between pre-
dicted and target spectral magnitudes. This loss function, com-
mon across all experiments, combines three complementary spec-
tral metrics:

Llog = || log(Y + ϵ)− log(Ŷ + ϵ)||1, (25)

Lsc =
||Y − Ŷ ||F

||Y ||F
, (26)

Lsot =
1

N

N∑
i=0

W1

(
Yi, Ŷi

)
, (27)

Ltotal = αLlog + βLsc + ηLsot, (28)

where x and x̂ represent the time-domain target and predicted sig-
nals, respectively, with Y = |STFT(x)| and Ŷ = |STFT(x̂)| de-
noting their corresponding STFT magnitude spectrograms. The
terms Yi and Ŷi refer to individual (normalised) time frames of the
spectrograms used in the spectral optimal transport loss Lsot [22]
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via the Wasserstein-1 distance W1. The constant ϵ ensures nu-
merical stability in the logarithmic term. The weights α, β, and
η are calibrated for each experiment to balance the contribution of
each loss component. For linear cases, we also compute a slight
variation of these losses where the STFT is replaced by the sam-
pled magnitude frequency response, which provides a more direct
measure of the systems transfer function (available in this specific
case). Although Lsot helps avoid poor local minima, the overall
spectral loss landscape remains non-convex, as illustrated in Fig-
ure 3, even for a single parameter.

We perform optimisation using the Adam optimiser with a
one-cycle cosine learning rate schedule. For linear cases, we run
15,000 optimisation steps, while for non-linear cases, we conduct
1,000 steps with 100 parallel random initializations to improve
convergence.

Some of the parameters are optimised in a density-normalised
form: D̂ = D/ρ and T̂0 = T0/ρ. For damping parameters, we
also directly optimise the γµ coefficients in some of the experi-
ments to enhance model flexibility when fitting to real-world data.

2 4 6 8 10
Bending stiffness (normalised)

Lsot

Lsc

Llog

Ltime

Figure 3: Loss landscapes with respect to the normalized bending
stiffness D̂. Three losses are considered: log-magnitude (Llog),
spectral convergence (Lsc), and spectral optimal transport (Lsot).
The time-domain MSE (Ltime) is included for comparison. The
vertical dotted line indicates the optimal value of D̂ for the target
response. The losses are scaled for better visualization.

By optimising the parameters D̂ and T̂0, we implicitly opti-
mise the modal frequencies while preserving the dispersion rela-
tion and eigenvalues determined by the geometry and boundary
conditions (solutions to eq. (2)). This approach differs fundamen-
tally from methods that optimise modes independently of physical
constraints [14].

4.3.2. String

We first consider the linear string model, focusing on parameter fit-
ting for both synthetic and real string responses. Two optimisation
approaches are used for this task.

In the first approach, and in particular for the real-world sce-
narios, we extract the spectral envelope from the target response
using high-order Linear Predictive Coding (LPC), though alterna-
tive methods could be employed. We then sample the LPC coef-
ficients in frequency using the Bark scale. On the model side, we
compute the transfer function of the linear system using eq. (16),
based on a set of parameters to be optimised. The predicted re-
sponse is sampled in the same way as the LPC envelope. We then
compute the loss using the functions defined in eq. (25), replacing
the STFT magnitude with the Bark-sampled magnitude response.
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Figure 4: Inverse modelling experiments. (a) Semi-log plot of the
fit to a real plucked string. (b) Semi-log plot of the fit to a real
struck thick plate.

This provides a simple and efficient route for inverse modelling in
the linear case, avoiding time-domain simulation. Figure 4a shows
the semi-log plot of the fit to a real plucked string.

In the second approach, we simulate the string response in
time by solving the linear ODE directly. This is done through re-
cursive multiplication of the discrete complex eigenvalues derived
from the dispersion relation sµ± = γµ ± iω̃µ. This can be effi-
ciently implemented using the prefix-sum algorithm [23] allowing
fast evaluation across modes. It is also possible to use the solving
schemes (eqs. (20) and (21)), however for the linear case this is not
necessary.

We fit the parameters of a single recording of a real plucked
string from the IDMT-SMT-Guitar dataset [24]. For this experi-
ment, we assume the string is fixed at both ends and that nonlinear
effects (e.g. pitch glide) are minimal.

While optimisation converges more quickly in the synthetic
case, the real-world scenario presents greater challenges. This in-
creased complexity arises from the need to account for not only the
PDE parameters but also the external force excitation, the acoustic
transfer function, measurement noise, and other effects.

We extend the model by optimising an additional parameter
bµ,2 (in Equation (16)) for each mode, to address the unknown
initial conditions. Furthermore, instead of projecting the solution
back to the physical domain using analytical mode shapes, we
simply optimise a set of abstract weights for each mode. These
weights account for effects such as the acoustic transfer and mi-
crophone placement, even if they are not physically interpretable.
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Figure 5: Spectrograms of the target and optimised forced responses from simulations of the von Kármán plate model. Top: Matching the
response at a single point on the plate, by optimising only the normalised bending stiffness (D̂target = 5.8328, D̂initial = 10, D̂optimised =
5.8329). Bottom: Matching the response by optimising only the coupling coefficients H , initialised with random values from a normal
distribution.

4.3.3. Plate

We apply a similar procedure to the linear plate model simulations,
examining both synthetic and real scenarios. The real-world case
uses a single hammer strike recording from a thick rigid plate taken
from the RealImpact dataset [25].

In the synthetic non-linear case, we simulate the displacement
of the plate at a fixed point in the domain. We then optimise the
parameters by propagating gradients through the time integrator to
match this response (i.e., using BPTT). This type of optimisation
is more sensitive to parameter initialisation of parameters and is
prone to getting trapped in local minima. Even when optimising a
single parameter, such as D̂, the loss landscape exhibits many local
minima (Figure 3). This behaviour is also consistent with previ-
ously observed challenges in the optimisation of frequencies [26].
In addition, care must be taken to ensure that all parameters re-
main within numerically stable ranges. In particular, the damp-
ing coefficients γµ must be constrained to ensure all poles lie in
the left half of the Laplace domain to avoid numerical instability.
To address the challenge of optimising the bending stiffness and
avoiding poor local minima, we adjust the weighting of Ltotal to
emphasise the spectral optimal transport and spectral convergence
losses. Since the optimisation using automatic differentiation is
fast (for approximately 0.1 seconds at 44,100 Hz), we can effi-
ciently explore multiple random initialisations in parallel [27].

We also experiment with the optimisation of the coupling co-
efficients C and H (in Equation (11)) of the von Kármán plate
model, which are otherwise difficult to compute analytically or nu-
merically. In the simply supported case, only the H tensor needs
to be optimised, since it satisfies the identity Hk

i,j = Cj
i,k [10].

We initialise the tensor with random values drawn from a normal
distribution and optimise it to match the simulated plate displace-
ment at a fixed point in space. This optimisation is carried out over
a sequence of 17,640 time steps (0.4 seconds at 44,100 Hz).

Figure 5 shows the spectrograms of the target, initial, and op-
timised forced responses from a synthetic von Kármán plate sim-
ulation. The results show that the optimisation successfully con-
verges to the correct behaviour. Although the fit can be performed
on a short segment (0.4 seconds), the optimised parameters remain
valid and consistent for longer simulations.

5. CONCLUSION

In this paper, we have presented a fast, differentiable modal simu-
lation framework for strings, membranes, and plates. By leverag-
ing GPU acceleration through the JAX library, our method signif-
icantly outperforms traditional CPU-based implementations, en-
abling efficient simulation, dataset generation, and inverse mod-
elling, even for non-linear models such as the von Kármán plate.
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The benchmarks demonstrate that our implementation scales
efficiently with an increasing number of modes, providing substan-
tial performance gains compared to existing MATLAB, optimised
C++, and GPU-based PyTorch (JIT) implementations. Further-
more, it supports effective gradient-based optimisation of physical
parameters from both synthetic simulations and real-world mea-
surements. We successfully recovered parameters such as tension,
bending stiffness, damping, and geometry, including the coupling
tensors of the non-linear von Kármán plate model.

However, directly optimising physical parameters rather than
fitting more abstract representations such as damped exponentials
or poles introduces significant challenges. The physical parame-
terisation adds complexity and non-linear constraints, making op-
timisation sensitive to initialisation and prone to convergence to
poor local minima. Despite these challenges, the physical ap-
proach offers considerable benefits. First, the results are directly
interpretable since the parameters correspond to physically mean-
ingful quantities. Second, the representation is highly compact,
capturing behaviour that would otherwise require many free pa-
rameters with just a few well-defined physical ones.

Despite the advantages, several limitations remain. The ill-
posed nature of inverse modelling in this case needs careful initial-
isation and robust optimisation strategies are essential. While our
experiments demonstrate successful parameter recovery, a quanti-
tative benchmark against alternative approaches such as gradient-
free optimisers or fitting to non-physical modal representations
would be required to fully assess the efficiency and robustness
of our physically constrained gradient-based method. Although
using multiple random initialisations helps mitigate these issues,
a more structured approach to parameter initialisation and opti-
misation scheduling is needed to improve robustness and conver-
gence. For example, a staged optimisation approach similar to that
of [13], in which damping and frequencies are optimised at differ-
ent stages, may improve convergence stability.

Looking ahead, we plan to explore several improvements and
extensions. First, we aim to generalise the solver to support three-
dimensional structures using a differentiable finite element method
(FEM) solver. Second, we will reimplement a modal SAV method
and the energy-conserving integration scheme in Python, both of
which have been previously implemented in MATLAB. Third, the
current coupling tensor computations could benefit from sparsity-
aware techniques. Exploiting the inherent structure of these ten-
sors through sparse matrix representations could lead to significant
speedups for high mode count simulations.

In summary, our work bridges classical modal techniques with
modern automatic differentiation methods, offering a highly effi-
cient, differentiable, and physically interpretable framework. It en-
ables new applications in audio synthesis, inverse modelling, and
physically informed machine learning, while opening avenues for
future research into differentiable physics-based modelling.
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