Proceedings of the 28" International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

TORCHFX: A MODERN APPROACH TO AUDIO DSP WITH PYTORCH AND GPU
ACCELERATION

Matteo Spanio and Antonio Roda

Centro di Sonologia Computazionale (CSC)
Dept. of Information Engineering
University of Padova
Padova, IT
{spanio, roda}@dei.unipd.it

ABSTRACT

The increasing complexity and real-time processing demands of
audio signals require optimized algorithms that utilize the com-
putational power of Graphics Processing Units (GPUs). Exist-
ing Digital Signal Processing (DSP) libraries often do not provide
the necessary efficiency and flexibility, particularly for integrating
with Artificial Intelligence (AI) models. In response, we intro-
duce TorchFX: a GPU-accelerated Python library for DSP, engi-
neered to facilitate sophisticated audio signal processing. Built on
the PyTorch framework, TorchFX offers an Object-Oriented inter-
face similar to torchaudio but enhances functionality with a novel
pipe operator for intuitive filter chaining. The library provides a
comprehensive suite of Finite Impulse Response (FIR) and Infi-
nite Impulse Response (IIR) filters, with a focus on multichannel
audio, thereby facilitating the integration of DSP and Al-based
approaches. Our benchmarking results demonstrate significant
efficiency gains over traditional libraries like SciPy, particularly
in multichannel contexts. While there are current limitations in
GPU compatibility, ongoing developments promise broader sup-
port and real-time processing capabilities. TorchFX aims to be-
come a useful tool for the community, contributing to innovation
in GPU-accelerated DSP. TorchFX is publicly available on GitHub
athttps://github.com/matteospanio/torchfx.

1. INTRODUCTION

As applications of DSP in fields like telecommunications, multi-
media, and Al become more complex, the need for real-time pro-
cessing makes it necessary to use algorithms optimized for Graph-
ics Processing Units (GPUs). For instance, the integration of DSP
and Al is critical in applications such as real-time audio source
separation, music information retrieval, and advanced audio ef-
fects for music production, where computational efficiency is nec-
essary.

Despite the strides made in GPU technology, existing DSP li-
braries frequently fall short in delivering the requisite efficiency
and flexibility demanded by modern applications. These libraries,
while operational, often possess design constraints that impede the
full exploitation of GPU capabilities [1, 2]. Moreover, the integra-
tion of AI models into DSP workflows necessitates a seamless and
intuitive interface capable of accommodating the complexities in-
herent in both domains. The absence of such a library creates a

Copyright: © 2025 Matteo Spanio et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

390

void within the ecosystem, forcing researchers and practitioners to
use cumbersome interfaces or develop custom solutions that may
not fully leverage GPU acceleration when developing complex Al
systems.

To address this need, we present TorchFX, a Python library
built on PyTorch for GPU-accelerated audio DSP. This library is
designed to provide an Object-Oriented interface that emulates the
usability of torchaudio, ensuring compatibility while enhancing its
functionality. By prioritizing user experience, TorchFX incorpo-
rates operator overloading, enabling the intuitive chaining of filters
through the use of the bitwise OR (I) operator. This modular choice
is inspired by frameworks like Langchain [3] in natural language
processing (NLP).

TorchFX offers a comprehensive suite of filters, including both
Finite Impulse Response (FIR) and Infinite Impulse Response (IIR)
filters and a set of common audio effects, to address the diverse re-
quirements of audio manipulation, with a particular focus on mul-
tichannel audio files. In addition a common interface is provided to
develop more custom filters and effects that integrate with the pro-
vided ones. This capability is indispensable in today’s multimedia
environment, where audio content frequently spans multiple chan-
nels and necessitates precise processing to achieve the desired out-
put. By bridging the gap between DSP and Al, TorchFX aims to
empower researchers and developers to implement advanced audio
processing techniques.

The structure of this paper is organized to provide an under-
standing of TorchFX and its contributions to the DSP landscape.
Section 2 presents a comprehensive survey of the background,
highlighting the evolution of GPU-accelerated libraries and exist-
ing DSP solutions. In Section 3, we delve into the design princi-
ples and core features of TorchFX, elucidating how it addresses the
limitations of current libraries. Section 4 provides a thorough eval-
uation of the library, demonstrating the efficiency of TorchFX and
showcasing its capabilities through real-world examples. Finally,
Section 5 concludes the paper by summarizing our findings and
outlining potential directions for future research and development.

2. BACKGROUND AND RELATED WORKS

In the realm of Digital Signal Processing (DSP) for audio, the
introduction of a new tool into the already diverse landscape of
Python libraries presents both challenges and opportunities. Ex-
isting solutions, while varied, often fail to comprehensively ad-
dress all potential use cases, particularly in terms of functionality
and tool design. To elucidate the current state of the art and iden-
tify gaps, we conducted a literature review focusing on Python li-
braries for audio DSP. The primary aim of this review was to assess

https://csc.dei.unipd.it/
mailto:spanio@dei.unipd.it
https://github.com/matteospanio/torchfx
http://creativecommons.org/licenses/by/4.0/

Proceedings of the 28" International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

the landscape of available tools and their capabilities, particularly
concerning GPU acceleration, which is increasingly important for
handling complex audio processing tasks.

The research questions guiding our investigation were metic-
ulously crafted to provide a comprehensive understanding of the
current offerings:

¢ How many GPU-accelerated libraries have been released
for Python?

¢ What functionalities do these libraries offer?

* How is their interface designed?

Scientific Literature on DSP Software (2008-2024)

175

150

-
N
o

—e— DSP total
Python
—— Python + GPU
—+— GPU (any language)

Number of papers
< o
& 3

wu
1=}

N
o

o

— —a

g Q v >
S & S &
P D ® w"

Figure 1: Scientific Literature on DSP Software (2008—2024)

To address these questions, we utilized the Scopus search en-
gine to perform a systematic literature review. The inclusion cri-
teria were defined using the search query: TITLE-ABS-KEY (((
signal AND processing) OR dsp) AND (library OR package OR
software) AND (audio OR sound OR music)) AND PUBYEAR
> 2007 AND PUBYEAR < 2025. The starting point of 2008 was
chosen to coincide with the first stable release of Python 3.0, mark-
ing a significant evolution in Python’s capabilities, while 2025 was
excluded as it is yet to conclude. The inclusion of terms such as
“library,” “package,” and “software” was strategic, ensuring a fo-
cus on software tool implementations and excluding generic DSP
processes without a designated interface for further development
by other programmers.

Our search yielded 2431 papers on digital signal processing li-
braries for audio published between 2008 and 2024. Of these, 119
were available in Python, with only 10 primarily focusing on GPU
acceleration [4,5, 6,7, 8,9, 10, 11]. This indicates a relatively lim-
ited focus on leveraging GPU capabilities within the Python DSP
community.

Subsequently, we refined our selection by excluding articles
not directly related to audio DSP or the specific development of
libraries, whether GPU or CPU-based. The final selection com-
prised papers associated with the most widely used libraries in the
audio domain, as summarized in Table 1. The table provides a
detailed overview of the libraries, their associated papers and au-
thors, and key characteristics such as GPU acceleration, the level
of the API (high or low), the availability of explicit filter imple-
mentations, and the capability for signal analysis.

The analysis of this survey reveals a notable lack of interest
within the scientific community in releasing efficient libraries for

391

signal processing, with a tendency to develop ad-hoc solutions that
are not adequately shared or valorized. Considering the substantial
body of research related to DSP, it would be prudent to systemati-
cally collect and share such software with the broader community.
Furthermore, none of the solutions identified in the survey provide
an object-oriented interface, instead relying on interfaces derived
from MATLAB functions [14]. This highlights a significant gap
in the availability of user-friendly, modular, and extensible DSP li-
braries that can fully exploit the capabilities of modern computing
architectures, such as GPUs, while offering an intuitive develop-
ment experience.

3. DESIGN PRINCIPLES AND CORE FEATURES

Inspired by the design paradigm established by torchaudio [5],
which is widely regarded as the standard for deep learning ap-
plications involving audio, our objective was to implement a dis-
tinct class for each filter type to ensure seamless compatibility with
torchaudio.

To promote a more object-oriented methodology for audio ma-
nipulation, we encapsulated both the signal and its sampling fre-
quency within a single class, Wave. Within this class, we over-
loaded the OR operator to function similarly to a pipe operator,
akin to that used in Bash. This design choice marks a departure
from the conventional representation of audio signals in existing
libraries, which typically provide the sample array and sampling
frequency as separate entities, with the frequency being utilized
only during signal manipulation. Given that numerous discrete al-
gorithms necessitate knowledge of the sample rate, the approach
adopted by torchfx (similar to that proposed by the pydub li-
brary) ensures that these discrete parameters remain transparent
and consistent throughout the program’s execution. This design
also mitigates potential bugs arising from omitted parameters; for
example, the 1ibrosa [13] library often defaults to a sampling
frequency of 22050 Hz. Additionally, the creation of the class fa-
cilitates operator overloading and the inclusion of supplementary
methods.

In torchfx, we have leveraged the strengths of
torchaudio and extended its interface. Essentially, the
Transforms library within torchaudio offers several
implementations of transformations applicable to signals (e.g.,
Resample for altering the sampling rate or Vol for adjusting
signal gain), alongside enabling transitions between the time do-
main and frequency domain using algorithms such as Short-Time
Fourier Transform (STFT), Mel spectrogram extraction, and the
Griffin-Lim algorithm.

The section pertaining to IIR and FIR filters, however, does
not implement a similar interface and is instead confined to the
functionals module of torchaudio, which emulates a
MATLAB-style interface’. This module does not offer default im-
plementations of various filter types (e.g., Butterworth, peaking,
Chebyshev, shelving) but instead provides a single generic func-
tion, 1filter, which requires the user to supply filter coeffi-
cients. Our aim was to develop a foundational implementation of
various FIR and IIR filter types through an object-oriented inter-
face analogous to the transformations provided by torchaudio,
thereby ensuring compatibility with modules used for construct-
ing neural networks, based on the nn .Module class provided by

1 An additional interface is provided by the sox bindings, but it lacks
GPU acceleration.

Proceedings of the 28" International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

Table 1: Overview and Features of Major Audio Libraries.

Authors Paper Library Filters API Signal Analysis | GPU
Cheuk et al. [7] nnAudio no low-level no yes
Yang et al. [5,12] | torchaudio yes low-level yes yes
McFee et al. [13] librosa no low-level yes no
Virtanen et al. [1] scipy yes high-level yes no

PyTorch.

Moreover, we sought to simplify and streamline the construc-
tion of processing pipelines by overloading the bitwise OR op-
erator. This approach is particularly advantageous as creating
classes often necessitates writing boilerplate code, which is typ-
ically avoided, especially when dealing with complex filter chains
or when the implementation of a neural network is not desired.

The following code snippet demonstrates the potential inter-
faces for implementing a simple filter chain:

from
from
from

torch import nn
torch.nn import Sequential
torchfx.signal import Wave

from torchfx.filter import (
HiShelving,
LoShelving,
)
signal = Wave.from_file("path_to_file.mp3")

Implementation using classes:
class FilterChain (nn.Module) :
def __init__ (self, sample_rate):
super () .__init__ (self)
self.fl HiShelving(
1000,
sample_rate)
self.f2 LoShelving (
2000,
sample_rate)

def forward(self, x):
x = gself.fl (x)
x = self.f2(x)

return x

fchain
result

FilterChain(signal.fs)
fchain(signal.y)

Implementation using Sequential
fchain Sequential ([
HiShelving (1000,
sample_rate=signal.fs),
LoShelving (2000,
sample_rate=signal.fs),

1)

result

fchain(signal.y)
Implementation using pipe operator
result signal \
| HiShelving (1000)
| LoShelving (2000)

\

392

In the final example, the sample rate of the discrete filters is omit-
ted, as it is lazily evaluated during filter application, thanks to
the pipe operator. Alternatively, one can define the filter chain
within Sequential without specifying the sampling frequency
and subsequently apply the filters to the signal using the pipe op-
erator. The operator overloading also manages the sampling fre-
quency, rendering the process transparent:

Implementation using Sequential
fchain Sequential ([

HiShelving (1000),

LoShelving (2000),

1)

result

fchain

signal |

4. PERFORMANCE EVALUATION

To evaluate the efficiency of our filter implementation within the
TorchFX library, we conducted a benchmarking study comparing
various Infinite Impulse Response (IIR) and Finite Impulse Re-
sponse (FIR) filters against those provided by the SciPy library in
conjunction with NumPy. Notably, libraries such as torchaudio
and Julius were excluded from this analysis. The rationale for this
exclusion lies in the fact that TorchFX is fundamentally based on
torchaudio, making any direct comparison redundant, aside from
minor overheads associated with wrapper classes. Additionally,
other libraries like Julius, nnAudio, and Librosa were not included
due to their lack of specificity in filter implementation. Julius,
for example, only implements FIR filters, while both Librosa and
nnAudio provide APIs that are excessively low-level and reliant
on SciPy. Consequently, the only meaningful comparison was be-
tween SciPy and TorchFX.

Given TorchFX’s dual capability to operate on both GPU and
CPU platforms, our evaluation encompassed a tripartite compar-
ison: TorchFX on CPU, TorchFX on GPU, and SciPy, focusing
on the efficiency of FIR and IIR filter applications. Additionally,
we conducted a benchmark to assess execution times across vari-
ous interfaces as delineated in Section 3. These interfaces include
the pipe operator, a class extending nn.Module, and a sequence
of filters concatenated in nn.Sequential. The experimental tests
were conducted on an Alienware Aurora R11 1.0.8 system, run-
ning Linux Ubuntu 22.04 with kernel version 6.8.0-57-generic.
This system was equipped with an NVIDIA GeForce RTX 3070
graphics card featuring 8GB of VRAM, CUDA version 12.4, and
an Intel 19-10900KF CPU operating at 5.3 GHz, complemented by
32 GB of RAM.

The benchmarking process was structured, with evaluations
based on the average execution time derived from 50 repetitions
of identical tasks. For each algorithm, three distinct implementa-
tions® were tested: one utilizing solely SciPy and NumPy on the

2The benchmark code is publicly accessible at the GitHub repository.

Proceedings of the 28" International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

CPU, another employing TorchFX exclusively on the CPU, and a
third leveraging TorchFX with execution, where feasible, on the
GPU. To optimize pipeline efficiency, our measurements focused

Table 2: Execution times for FIR filters (in seconds).

Time (s) ~ Channels GPU CPU SciPy solely on the execution time of filter application on the signal, de-
5 1 0.014247 0.033221 0.020940 liberately excluding the computation of filter coefficients and the
5 2 0.009029 0.032975 0.041547 reading of the signal into memory from the timing assessments.
5 4 0.001824 0.035984 0.087344 The performance evaluation of the IIR and FIR filters was con-
5 8 0.003292 0.034048 0.171197 ducted by varying the input signal’s duration, ranging from 5 sec-
3 12 0.004809 0.073933 0.251341 onds to 10 minutes, and altering the number of channels from 1 to
60 1 0.004731 0.464397 0.261466 12. The processed signal comprised white noise, generated via the
60 2 0.009341 0.438233 0.525599 numpy.random.randn function, sampled at a frequency of 44100
60 4 0.018447 0.469470 1.006187 Hz—a sampling rate commonly supported by contemporary com-
60 8 0.053108 0.526290 2.054250 puter audio cards.
60 12 0.079765 1.030621 3.033699 Figure 2 illustrates the results, showing that, overall, for
180 1 0.013415 1.401418 0.777573 single-channel and extremely short signals, filter application is
180 2 0.039879 1.340833 1.585332 more efficiently executed using SciPy. This efficiency is due to
180 4 0.079396 1.430514 3.129619 the underutilization of the GPU’s parallel computing capabilities
180 8 0.155036 1.579974 6.161899 and the additional overhead incurred by VRAM memory trans-
180 12 0.231503 3.071292 9.509333 fers. However, as the number of channels increases, the execu-
300 1 0.032687 2.341085 1.313260 tion time for the SciPy implementation escalates linearly, whereas
300 2 0.064894 2.216330 2.598697 TorchFX, both with and without GPU acceleration, demonstrates
300 4 0.128962 2.362212 5.316212 significantly enhanced efficiency, the exact performance numbers
300 8 0.257784 2.613295 10.421657 are displayed in table 2 for FIR results and 3 for IIR results.
300 12 0.391072 5.047783 15.418619 Unsurprisingly, as the dimensions of the input increase, the
600 1 0.064427 4.676215 2.635783 CPU time of SciPy algorithms escalates dramatically. This phe-
600 2 0.129250 4.567576 5.213626 nomenon can be attributed to the inherent limitations of CPU pro-
600 4 0254230 4.843752 10.236919 cessing, which struggles to efficiently handle larger datasets due to
600 8 0508825 5.179805 20.946205 its sequential execution model. In stark contrast, the GPU imple-
600 12 0.785939 10.173771 31.074807 mentation of TorchFX, leveraging its parallel processing capabil-

ities, consistently maintains execution times well below one sec-
ond, even for extensive input signals. This remarkable efficiency
Table 3: Execution times for IIR filters (in seconds). underscores the advantages of utilizing GPU acceleration for dig-
ital signal processing tasks, particularly when dealing with high-
dimensional data. It is also important to note that the CPU imple-

Time (s) _Channels GPU CPU SciPy mentation of TorchFX remains competitive, particularly for larger
5 1 0.001074 0.006376 0.003344 signals. This is largely due to its optimization for multi-core pro-
5 2 0.001010 0.009064 0.006739 cessing, allowing it to effectively utilize all available CPU cores.
5 4 0.001054 0.015751 0.013377 As a result, even in scenarios where GPU acceleration may not
5 8 0.001197 0.037838 0.027034 be feasible, TorchFX’s CPU performance provides a viable alter-
5 12 0.001199 0.066645 0.041763 native, ensuring that users can achieve efficient processing with-
60 1 0.282906 0.142985 0.043823 out the need for specialized hardware. Furthermore, the bench-
60 2 0.002125 0.191987 0.088169 marking results highlight a critical aspect of digital signal pro-
60 4 0.001242 0.273665 0.342257 cessing: the choice of implementation can significantly impact
60 8 0.001255 0.443807 0.688531 performance. While SciPy excels in scenarios involving single-
60 12 0.001269 0.741386 1.038889 channel and short-duration signals, its performance deteriorates
180 1 0.001324 0.435303 0.250236 as the complexity of the input increases. In contrast, TorchFX
180 2 0.001205 0.570106 0.502351 demonstrates a more scalable approach, maintaining efficiency
180 4 0.001259 0.805437 1.007327 across varying input sizes and channel counts. This scalability
180 8 0.001257 1.290896 2.017688 is particularly beneficial for applications requiring real-time pro-
180 12 0.001281 2.139772 3.026279 cessing or handling of multi-channel audio, where the ability to
300 1 0.001058 0.737175 0.418597 manage increased computational demands without sacrificing per-
300 2 0.001053 0.948024 0.839463 formance is paramount.

300 4 0.001087 1.322156 1.683135 The comparative analysis of interface efficiency was con-
300 8 0.001244 2.115006 3.374017 ducted on a signal sampled at 44100 Hz, encompassing 8 chan-
300 12 0.001364 ~ 3.547629 5.054017 nels, with a duration of 2 minutes. This signal was synthetically
600 1 0.001063 1.465892 0.840227 generated in a random manner, and the average execution time was
600 2 0.001111 1.888490 1.686797 calculated from 50 algorithm repetitions using the Python timeit
600 4 0.001095 2.641203 3.373638 module. The filter series comprised a chain of two Butterworth fil-
600 8 0.001245 4.251984 6.886340 ters and two Chebyshevl filters. In this scenario, the SciPy imple-
600 12 2.466622 7.079701 10.335053 mentation was found to be slower than all other implementations,

which exhibited closely aligned performance metrics. Table 4

< 393 >

Proceedings of the 28" International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

IR filter
12

10

Execution time (s)

N~

2

N —
1
Number of channels

n II .II
4 8 12

FIR filter

Method

== GPU mm CPU mm SCIPY

Execution time (s)

12

II II II _I| -
1 2 4 8

Number of channels

Figure 2: Comparison of the average execution time as a function of the number of channels for IIR and FIR filters.

demonstrates that the various implementations based on TorchFX
achieved an average execution time of 1.56 + 0.01 seconds, ap-
proximately half a second faster than the SciPy implementation.

Table 4: Execution time as a function of the interface.

Implementation Time (s)
scipy 2.0173
nn.Module subclass | 1.5743
nn.Sequential 1.5487
pipe operator 1.5626

5. CONCLUSIONS

In this article, we introduced TorchFX, a novel Python library
designed to provide high-level programming interfaces to design
complex filters in Python audio signal processing by leveraging
the computational efficiencies of GPU acceleration. Built on the
robust PyTorch framework, TorchFX provides an object-oriented
interface that simplifies the manipulation of audio signals. A key
innovation of this library is the introduction of the pipe opera-
tor, achieved through the operator overloading of the OR opera-
tor, which allows users to intuitively chain multiple filters. This
feature facilitates the seamless creation of complex filter chains,
making the process both intuitive and straightforward. The library
offers a comprehensive suite of FIR and IIR filters, with particular
attention to the processing needs of multichannel audio files.
Despite the advancements and capabilities presented by
TorchFX, it is important to acknowledge certain limitations that
currently exist. One significant limitation is the compatibility
with the available GPUs on the market. At present, TorchFX pri-
marily supports CUDA, the programming language developed by
NVIDIA for its hardware, which means that the library is compat-
ible with NVIDIA GPUs. However, it does not currently support
AMD or Intel GPUs. This limitation is a consequence of TorchFX

394

being built on PyTorch, which is actively working to extend its
support to these platforms. We are optimistic that TorchFX will
become compatible with AMD and Intel GPUs in the future. Ad-
ditionally, while there are ongoing projects exploring the use of
Vulkan for GPU acceleration, these efforts are still in development
and have not yet reached a stable state. Nevertheless, TorchFX re-
mains compatible with CPUs, allowing it to be used on machines
that do not have GPU capabilities.

Looking ahead, TorchFX is still under active development,
and our roadmap includes several exciting enhancements. We
plan to expand the library’s interface by introducing additional
filters and incorporating common DSP functionalities such as
Fast Fourier Transform (FFT) and Short-Time Fourier Transform
(STFT). These additions will further enhance the library’s versatil-
ity and utility in various audio processing applications. Moreover,
we are committed to enabling compatibility with real-time audio
streams, which will open up new possibilities for live audio pro-
cessing applications. This capability will be particularly valuable
in fields such as music production, broadcasting, and interactive
audio experiences.

In conclusion, TorchFX is a new tool for audio signal pro-
cessing that integrates DSP techniques within an Al-development
framework, aiming to simplify the implementation of advanced
audio processing methods. As the library continues to evolve, it
aspires to become a valuable resource for researchers and develop-
ers in the audio processing domain, contributing to advancements
in GPU-accelerated audio processing.

6. REFERENCES

[1] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson,
K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson,
Eric Jones, Robert Kern, Eric Larson, C J Carey, ilhan Po-
lat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Lax-

Proceedings of the 28" International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

[2

—

3

—

[4

—

[5

—

(6]

(7]

(8]

[9

—

[10]

alde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Antonio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors, “SciPy 1.0: Fundamental Algorithms for Sci-
entific Computing in Python,” Nature Methods, vol. 17, pp.
261-272, 2020.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau,
Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H.
van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernan-
dez del Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant,
“Array programming with NumPy,” Nature, vol. 585, no.
7825, pp. 357-362, Sept. 2020.

Harrison Chase, “Langchain,” GitHub repository, Oct. 2022,
https://github.com/hwchasel7/langchain.

Sungho Lee, Marco A. Martinez-Ramirez, Wei Hsiang Liao,
Stefan Uhlich, Giorgio Fabbro, Kyogu Lee, and Yuki Mitsu-
fuji, “Grafx: An open-source library for audio processing
graphs in pytorch,” in Proceedings of the International Con-
ference on Digital Audio Effects, DAFx. 2024, pp. 475-478,
DAFx, Publisher Copyright: Copyright: © 2024 Sungho
Lee et al.; 27th International Conference on Digital Audio
Effects, DAFx 2024 ; Conference date: 03-09-2024 Through
07-09-2024.

Yao-Yuan Yang, Moto Hira, Zhaoheng Ni, Artyom Asta-
furov, Caroline Chen, Christian Puhrsch, David Pollack,
Dmitriy Genzel, Donny Greenberg, Edward Z. Yang, Jason
Lian, Jeff Hwang, Ji Chen, Peter Goldsborough, Sean Nar-
enthiran, Shinji Watanabe, Soumith Chintala, and Vincent
Quenneville-Belair, “Torchaudio: Building Blocks for Au-
dio and Speech Processing,” in ICASSP 2022 - 2022 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, may 23 2022, pp. 6982-6986.

David Diaz-Guerra, Antonio Miguel, and Jose R. Beltran,
“gpurir: A python library for room impulse response simula-
tion with gpu acceleration,” Multimedia Tools and Applica-
tions, vol. 80, no. 4, pp. 5653 — 5671, 2021.

K.W. Cheuk, H. Anderson, K. Agres, and D. Herremans,
“NnAudio: An on-the-Fly GPU Audio to Spectrogram Con-
version Toolbox Using 1D Convolutional Neural Networks,”
IEEE Access, vol. 8, pp. 161981-162003, 2020.

Muhammad Aitessam Ahmed, “Design and development of
audio processing and speech recognition algorithm,” in 2021
Seventh International Conference on Aerospace Science and
Engineering (ICASE), 2021, pp. 1-7.

Jagadesh Ramaiah and Rajshekhar Gannavarpu, “Dynamic
fringe analysis using GPU assisted root-MUSIC method,” in
Optical Metrology and Inspection for Industrial Applications
VII, Sen Han, Gerd Ehret, and Benyong Chen, Eds. Interna-
tional Society for Optics and Photonics, 2020, vol. 11552, p.
1155206, SPIE.

Mihai Bucurica, Ioana Dogaru, and Radu Dogaru, “Improv-
ing computational efficiency for implementing a sound prop-
agation simulation environment using python and gpu,” in
2016 8th International Conference on Electronics, Comput-
ers and Artificial Intelligence (ECAI), 2016, pp. 1-4.

395

(1]

[12]

[13]

[14]

Bertrand Fontaine, Dan F. M. Goodman, Victor Benichoux,
and Romain Brette, “Brian hears: Online auditory processing
using vectorization over channels,” Frontiers in Neuroinfor-
matics, vol. 5, pp. 9, July 2011.

Jeff Hwang, Moto Hira, Caroline Chen, Xiaohui Zhang,
Zhaoheng Ni, Guangzhi Sun, Pingchuan Ma, Ruizhe Huang,
Vineel Pratap, Yuekai Zhang, Anurag Kumar, Chin-Yun Yu,
Chuang Zhu, Chunxi Liu, Jacob Kahn, Mirco Ravanelli,
Peng Sun, Shinji Watanabe, Yangyang Shi, and Yumeng
Tao, “Torchaudio 2.1: Advancing speech recognition, self-
supervised learning, and audio processing components for
pytorch,” in 2023 IEEE Automatic Speech Recognition and
Understanding Workshop (ASRU), 2023, pp. 1-9.

Brian McFee, Colin Raffel, Dawen Liang, Daniel P. W. Ellis,
Matt McVicar, Eric Battenberg, and Oriol Nieto, “librosa:
Audio and music signal analysis in python,” in Proceed-
ings of the 14th Python in Science Conference, K. Huff and
J. Bergstra, Eds., 2015, pp. 18-25.

The MathWorks Inc., “Matlab version: 9.13.0 (r2022b),”
2022.

https://github.com/hwchase17/langchain

	1 Introduction
	2 Background and related works
	3 Design principles and core features
	4 Performance Evaluation
	5 Conclusions
	6 References

@inproceedings{DAFx25_paper_65,
 author = "Spanio, Matteo and Rodà, Antonio",
 title = "{TorchFX: A Modern Approach to Audio DSP with PyTorch and GPU Acceleration}",
 booktitle = "Proceedings of the 28-th Int. Conf. on Digital Audio Effects (DAFx25)",
 editor = "Gabrielli, L. and Cecchi, S.",
 location = "Ancona, Italy",
 eventdate = "2025-09-02/2025-09-05",
 year = "2025",
 month = "Sept",
 publisher = "",
 issn = "2413-6689",
 doi = "",
 pages = "390--395"
}

