
Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

INFERENCE-TIME STRUCTURED PRUNING FOR REAL-TIME NEURAL NETWORK
AUDIO EFFECTS

Christopher Johann Clarke

The University of Electro-Communications
chris.clarke@uec.ac.jp

Jatin Chowdhury

Chowdhury DSP
jatin@chowdsp.com

ABSTRACT

Structured pruning is a technique for reducing the computational
load and memory footprint of neural networks by removing struc-
tured subsets of parameters according to a predefined schedule
or ranking criterion. This paper investigates the application of
structured pruning to real-time neural network audio effects, fo-
cusing on both feedforward networks and recurrent architectures.
We evaluate multiple pruning strategies at inference time, with-
out retraining, and analyze their effects on model performance. To
quantify the trade-off between parameter count and audio fidelity,
we construct a theoretical model of the approximation error as a
function of network architecture and pruning level. The result-
ing bounds establish a principled relationship between pruning-
induced sparsity and functional error, enabling informed deploy-
ment of neural audio effects in constrained real-time environments.

1. INTRODUCTION

In the development of digital audio effects, developer’s will often
make trade-offs for the sake of computational efficiency. A com-
mon example is the use of a lookup table or other approximation
for computing a mathematical expression which would be compu-
tationally expensive to perform in real-time (see e.g. [1]).

Machine learning, and particularly black-box neural networks
are becoming increasingly common-place in the development of
digital audio effects [2, 3, 4]. When performing neural network
inference for an effect, the developer may make trade-offs related
to the sample rate at which inference is performed [5], as well as
mathematical approximations as described above. However, the
most obvious trade-off between computational performance and
accuracy in the context of a neural network is the number of “pa-
rameters” or “weights” contained in the network. Indeed, many
prior publications describing neural architectures for digital audio
effects demonstrate that increasing the number of parameters in
a neural network increases the networks accuracy, while also in-
creasing its computational cost, e.g. [4]. Minimizing the network
parameter count is the most significant performance/accuracy trade-
off when developing a neural network-based system, since the ef-
ficacy of neural networks is often due to their over-parameterizing
the problem they are trained to solve [6].

However, a neural network’s parameter count is typically cho-
sen at training time, making it challenging for a developer to choose
the right trade-off between accuracy and performance, especially
considering that training a large neural network can take hours or
days. One method for reducing a neural network’s parameter count

Copyright: © 2025 Christopher Johann Clarke et al. This is an open-access article

distributed under the terms of the Creative Commons Attribution 4.0 International

License, which permits unrestricted use, distribution, adaptation, and reproduction

in any medium, provided the original author and source are credited.

post-training is “pruning” [7]. Pruning algorithms allow param-
eters to be removed from a neural network with (ideally) mini-
mal change to the neural network’s accuracy, thereby reducing the
amount of computation required to perform inference.

The remainder of this paper is organized as follows: §2 re-
views relevant research on neural network pruning and related tech-
niques; §3 outlines the proposed structured pruning methodology;
§4 presents the results of pruning experiments; and §5 concludes
the paper. To aid clarity, the experimental results, theoretical er-
ror models, and corresponding analyses are presented per network
architecture, allowing each model class to be discussed indepen-
dently and comprehensively.

2. PRIOR WORK

Pruning neural networks was conceived as a way to strategically
reduce a network’s parameter count by removing “unimportant”
weights from the network [8]. While this paper will primarily fo-
cus on the use of pruning to improve speed of inference, prior work
also discusses the effectiveness of pruning in reducing over-fitting
[9], allowing networks to be trained on smaller datasets, and reduc-
ing a network’s memory footprint, along with improving the net-
work’s performance at both training- and inference-time. Pruning
is sometimes used as part of an iterative training process, in which
the neural network is recursively trained, pruned, and re-trained
until some accuracy or performance goal has been met [10].

2.1. Pruning for Sparsity

Most early pruning literature discusses the pruning of individual
weights from the network. In practice, this usually results in “zero-
ing” one of the values in one of the network’s weights matrices, so
as weights are pruned from networks the weights matrices become
more sparse [11]. Achieving matrix sparsity allows the network’s
inference computations to be optimized using sparse matrix-matrix
and matrix-vector multiplication algorithms [12]. However, sparse
matrix multiplies often require numerous indirect memory accesses,
thereby limiting the potential performance gains, unless inference
is being performed on hardware that has dedicated hardware accel-
eration for sparse matrix operations [13]. This limitation is espe-
cially significant for neural networks used in real-time audio sys-
tems, where crucial inferencing optimizations rely on hardware-
level performance primitives that require sequential memory ac-
cess (e.g. SIMD operations) [14]. Still, pruning individual weights
is a popular technique, and machine learning training libraries of-
ten provide tutorials for pruning neural networks with the goal of
making the network more sparse [15, 16].

DAFx.1

< >

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

358

mailto:chris.clarke@uec.ac.jp
mailto:jatin@chowdsp.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

2.2. Structured Pruning in Convolutional Networks

Rather than pruning individual weights, recent research has fo-
cused on pruning groups of weights together, referred to as “struc-
tured pruning” [17]. This approach has found success in convo-
lutional neural networks used for image classification (e.g. VGG-
16 [18]), where entire convolution “filters” can be pruned from
the network architecture. Prior research shows significant perfor-
mance improvements with minimal changes in accuracy when us-
ing a pruning-training loop to improve image classification net-
works [17, 19, 10]. It is worth noting that prior research primarily
discusses the application of structured pruning to dense and con-
volutional networks, and there has been relatively little discussion
of structured pruning for recurrent networks.

2.3. Pruning Alternatives

Pruning is not the only method for reducing a neural network’s
computational cost. Other popular methods include distillation
[20] and model quantization [21]. While an in-depth investiga-
tion of these methods is outside the scope of this work, a brief
discussion is provided in the following sections.

2.3.1. Distillation

Distillation involves training a smaller neural network using the
output of a larger network, and has been a successful approach
for improving model performance in several domains including
speech recognition, speech synthesis, and large language models
[22, 23, 24]. Distillation can be especially effective for training
smaller “specialist” models from a larger “generalist” model. Note
that the distillation process must occur at training-time.

2.3.2. Quantization

“Quantized” neural network inference using reduced-precision (i.e.
“quantized”) weights. Networks may be trained with the intention
of being used for quantized inference (known as “quantization-
aware training”), however, any neural network may have its weights
quantized regardless of how it was trained. Quantization is a com-
mon practice for deploying neural networks on embedded devices
that are limited in both memory availability and compute.

As an example, a network trained with 32-bit floating-point
weights may have its weights quantized to 8-bit integers. This type
of quantization reduces the size of the neural network’s weights
and allows the model inference to make better use of hardware-
level parallelization.1 More aggressive quantization schemes in-
clude “binarized neural networks”, which quantize all of the net-
work’s weights to either +1 or −1 [25].

While quantization can be used in real-time audio processing,
its use is somewhat limited for neural networks that are designed to
process time-domain audio data, since the quantization will result
in a corresponding loss of quality.

1Modern Intel CPUs provide 128-bit XMM registers, which can be
used to perform operations on 4 single-precision floating point values at
a time. Quantizing the network weights to 8-bit integers allows the same
128-bit register to be used to perform operations on 16 quantized values,
allowing for a potential 4x speed-up.

3. METHODOLOGY

We begin by formally introducing the structured pruning tech-
niques and ranking strategies that form the basis of the experimen-
tal analysis in this paper.

3.1. Notation

Let D = {(x, y)} denote a dataset consisting of observed real-
valued input-output pairs, where the inputs x and outputs y are
recorded from an audio processing function. An approximator A
is a trainable function that, upon training, produces an approxima-
tion f∗ of the true underlying function f . Specifically, ∀x ∈ D,
the function f∗ produces an output ŷ = f∗(x) such that the dis-
crepancy between ŷ and the true output y = f(x) is bounded by a
given tolerance ε > 0, as quantified by a loss function L; that is,

L
(
f∗(x), f(x)

)
≤ ε , ∀(x, f(x)) ∈ D. (1)

3.2. Structured Pruning Techniques

Pruning typically works by constructing a “ranking” of elements
based on how significantly each element affects the accuracy of the
neural network. These elements could be individual weights (in
traditional pruning) or groups of weights such as a filter or matrix
row/column (in structured pruning). Then the N lowest-ranking
elements may be pruned from the network. In practice, elements
are ranked based on some criterion, which is used as a proxy for
that element’s relative impact on the network’s accuracy. The fol-
lowing sub-sections present several potential ranking criteria.

Formally, let a neural network contain a weight matrix M ∈
Rm×n within a layer defined by the mapping

y = σ(Mx+ b), (2)

where x ∈ Rn is the input to the layer, b ∈ Rm is a bias vector,
σ : Rm → Rm is an elementwise nonlinear activation function,
and y ∈ Rm is the output vector. In structured pruning, we define
a collection of prunable elements S = {s1, s2, . . . , sk}, where
each si denotes a structured unit—typically a row or column of
M, corresponding to an output or input neuron, respectively.

Each element si ∈ S is assigned a scalar importance score
via a ranking function ρ : S → R, which quantifies the relative
contribution of that element to the network’s behavior. This rank-
ing function is typically defined via a qualified objective (weight
magnitude, activation statistics, loss sensitivity), rather than a no-
ticeable impact on loss metrics, due to computational intractability.

Given a pruning budget N ∈ N, the N lowest-ranked elements
according to ρ are selected for removal. Let Sprune ⊂ S be this
subset, and T be one possible pruning candidate subset of size N :

Sprune = argminT ⊂S, |T |=N

∑
s∈T

ρ(s). (3)

Structured pruning modifies M by eliminating the correspond-
ing rows and/or columns associated with Sprune.

This has two immediate implications —Downstream effects:
Pruning an output unit (row of M) removes a corresponding entry
in y, which may eliminate dependent units in subsequent layers.
Upstream effects: Pruning an input unit (column of M) implies
that the corresponding feature in x is unused, potentially enabling
upstream pruning of earlier layers.

DAFx.2

< >

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

359



Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

In practice, this procedure is applied layer-by-layer, and the
choice of ρ significantly affects the accuracy-compression trade-
off. The next sections define several commonly used ranking func-
tions and analyze their behavior across network architectures.

3.2.1. Minimum Weights Ranking

Minimum weights ranking assigns importance to each structured
element (e.g., row or column) of the weight matrix M based solely
on the magnitude of its constituent weights. A common approach
is to compute the ℓ1-norm for each row or column:

ρL1(si) =
∑
j

|Mij | or
∑
j

|Mji|, (4)

depending on whether rows or columns are being pruned. This
method, introduced in [19], is computationally efficient and does
not require data or inference, making it suitable for rapid prun-
ing during or after training. However, it assumes a direct corre-
spondence between weight magnitude and contribution to func-
tion, which may not hold in neural networks with heavy over-
parameterization or strong activation nonlinearity.

3.2.2. Mean Activations Ranking

Mean activations ranking evaluates the empirical contribution of
each structured element by measuring its effect on the layer’s out-
put activations. Following [26], let y = σ(Mx + b) be the layer
output, and consider a validation set Dval. For each row si of
M, define a modified network A∩si in which the corresponding
weights are zeroed. Then compute the output statistics over Dval:

argmin ρact(si) = ∀si ∈ (σx∼Dval [y
∩si ]) (5)

Elements with minimal effect on the output distribution are con-
sidered redundant. This method is particularly effective in pruning
units whose activations saturate under nonlinearities such as tanh
or ReLU, thereby contributing little dynamic variation to down-
stream layers. While more accurate than magnitude-based rank-
ing, it incurs additional cost due to inference over a validation set.

3.2.3. Minimization Ranking

Minimization-based ranking seeks to directly minimize a loss func-
tion L while pruning. Let L(A) denote the network’s loss (e.g.,
MSE) on a dataset. The importance of element si is measured by
the increase in loss upon its removal:

ρloss(si) = L(A∩si)− L(A). (6)

This approach captures the true functional impact of a structural
unit and is thus more principled, but requires an evaluation pass
per candidate element. In practice, surrogate approximations of the
loss change, such as second-order Taylor expansions or saliency-
based heuristics, may be employed to reduce computational cost
[10]. Importantly, the optimal cost function may not be the same
as the training objective; it should instead reflect the sensitivity of
the model to pruning.

3.3. Experimental Setup

An experiment was designed in order to examine the efficacy of
different pruning methods for real-time audio processing neural
networks. A dataset was constructed consisting of 10 seconds of
guitar audio processed through a custom-built “fuzz” effect pedal,
and recorded at 96 kHz sample rate. Three networks were trained
on the dataset: a memory-less network made up of fully-connected
“dense” layers with ReLU activations (Dense), a feed-forward
network made up of convolutional layers with tanh activations
(Conv.), and a recurrent neural network made up of a Long Short-
Term Memory layer (LSTM). While other recurrent network ar-
chitectures including Gated Recurrent Units (GRUs) and state-
space models are also common in audio processing, the LSTM was
chosen since it has more weights per hidden unit, thereby creating
more potential pruning candidates. Each network was designed to
have approximately the same number of parameters; the number
of parameters was chosen arbitrarily for a realtime capable net-
work. Each network was trained for 100 epochs, using the Adam
optimizer and the mean-squared error (MSE) as the training loss
function. Table 1 shows the specific design and training results for
each network. 100 epochs was chosen since each network’s train-
ing converged to a reasonable degree of accuracy, which allowed
the effects of pruning to be measured.

Model Dense Conv. LSTM
# Layers 8 4 1

Hidden Size 64 32 84
Parameters 29,313 30,081 28,981

Training Loss 0.0114 0.0109 0.0036

Table 1: Training design and results for the neural networks used
in the experiment. The number of layers were chosen to approxi-
mately match the number of parameters in each network type.

Next each network went through several iterations of prun-
ing and testing using validation data. In each iteration a certain
number of elements were pruned from the network, until the to-
tal number of parameters remaining in the network was fewer than
13,000. At each iteration the validation error (MSE) was measured
along with the “real-time factor” FRT = Taudio/Tproc, where Taudio

is the duration of the validation audio data in seconds, and Tproc is
the time required for the neural network to process the audio data.
This process was repeated with each neural network, once with
each of the proposed ranking methods: Minimum Weights (MW),
Mean Activations (MA), and Minimization (MIN). The Mean Ac-
tivations and Minimization rankings used the same training data
that was used to train the networks. The cost function used by the
Minimization ranking was mean-squared error.

4. RESULTS

4.1. Preliminaries

Definition 4.1.1 (Parameter-Complexity Measure). Let f :
[a, b]→ R be a function and fix an approximation tolerance ε > 0,
we introduce a parameter-complexity measure κ(f ; ε) ∈ R, which
quantifies a property of f that governs how “hard” it is to approx-
imate f within an error ε. κ(f ; ε) is not itself the number of pa-
rameters of the approximatorA but rather a real number capturing
the function’s inherent complexity. Furthermore, assume that there

DAFx.3

< >

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

360



Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

Figure 1: Pruning performance of Dense, Conv, and LSTM models. X-axis shows parameter count (descending), Y-axis shows MSE
(ascending), and RT (ms) is indicated inside each marker.

exists a function Φ : R→ N, which maps this complexity measure
to the number of parameters required in a neural network architec-
ture in order to achieve an approximation error less than ε. That
is, the parameter count is given by:

Param(A) = Φ

[
κ(f ; ε),A,D{x× y}

]
(7)

Note that the parameter count changes depending on the size
of the pairs x× y ∈ D. Unless explicitly stated, herein we assume
the cases where size(D)→∞.

Under the Universal Approximation Theorem [27], consider
an approximator A that seeks to reconstruct the underlying map-
ping between input and output data. As a base case, we introduce a
set of candidate parameter-complexity measuring functions κ that
can be directly related to the parameter count Param(A).

4.2. Pruning Feedforward Dense Networks

4.2.1. Results of Pruning

Table 2 shows the results of the dense network pruning experi-
ment using Minimum Weights, Mean Activations, and Minimiza-
tion rankings respectively. Figure 1 shows a visualization of ex-
periment results for all three ranking methods. Notably, the Mean
Activations ranking maintained the smallest validation error as the
parameter count decreased, while the largest validation error oc-
curred when using Minimization ranking. As the parameter count
decreased, the real-time performance improved by nearly a factor
of 2. A model of the expected error is made to explain the be-
haviour of the error as the parameter count is reduced.

4.2.2. Error Modelling w.r.t Pruning in ReLU Networks

As shown, the error changes as more pruning is performed on the
network. This error can be estimated using the work shown in
Definition §4.1.1.

Proposition 4.2.1. Let f : [a, b] → R be a continuous function,
and let error ε > 0. The κ(f, ε) is defined as the ⌊N ∈ Z s.t ∃N
partition functions s, si : [xi−l.xi] → R that is bounded within
[a, b] where S = sNi=1 partitions f(x) satisfying:

• a = x0 < x1 < · · · < xN = b

• ∀x ∈ S = {s(xi−l.xi)}Ni=1 =⇒ |f(x)− si(x)| ≤ ε

Lemma 4.2.1. For an error (between actual function f and a
piecewise linear approximation), E ← f(x) − si(x), under the
maximum bounded f ′′ using Taylor’s theorem [28], with f ′′(ξ) is
the f ′′ at some point chosen (x− x0).

E =

∣∣∣∣f ′′(ξ)

2
(x− x0)

2

∣∣∣∣ ≤ M

2
h2

ε ≤ M
2
h2 ⇒ a range h ≤

√
2ε∗
M

is true iff f ′′ is bounded by the

max(M) from Definition §8.0.2, and the error is bound to ≤ M
2
h2

Lemma 4.2.2. Restating Theorem 1 of [29], a model with n0

inputs and k hidden layers of widths n1, n2, ..., nk can divide
the input space in (Πk−1

i=1 ⌊
ni
n0
⌋)Σn0

i=0

(
nk
i

)
, and Corollary 5 of

[30]: A rectifier neural network with n0 input units and L hid-
den layers of width n ≥ n0 can compute functions that have
Ω(( n

n0
)(L−1)n0nn0 linear regions. It follows that such a net-

work must be able to represent as many linear regions as the num-
ber of segments in our piecewise approximation: This yields that
Φ[maxx∈[a,b] |f ′′(x)|, · · · ] =

Ω

(
n

n0

)(L−1)n0

nn0 ≥ (b− a)

√
M

2ε
(8)

This inequality connects the approximation error ε and the cur-
vature measure M (via the bound on f ′′) to the complexity (i.e. the
number of linear regions) that the ReLU network must be capable
of expressing. The parameters of the network must scale so that it
can produce a sufficient number of linear regions to approximate f
with the desired error ε.

Then, viewing the left-hand side of the inequality as the net-
work’s capacity in terms of the number of distinct linear regions,
the function Φ maps κ(f ; ε) to the required parameter count. For
brevity, this inequality will not be restated in the following sec-
tions.

4.3. Pruning Feedforward Conv.

4.3.1. Results of Pruning

Table 3 shows the results of the convolutional network pruning ex-
periment. Figure 1 shows a visualization of experiment results for

DAFx.4

< >

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

361



Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

Iteration Minimum Weights Mean Activations Minimization

Params Error FRT Params Error FRT Params Error FRT

0 29313 0.01131 5.505 29313 0.01131 5.501 29313 0.01131 5.509
1 27729 0.01131 5.591 26540 0.01131 5.626 27351 0.01909 5.522
2 26145 0.01131 5.942 23967 0.01131 5.716 25277 0.01822 5.545
3 24561 0.01123 6.112 21525 0.01131 6.262 23668 0.01806 5.567
4 22757 0.01455 6.360 19214 0.01131 7.468 21867 0.01806 6.105
5 20358 0.01455 7.405 17092 0.01131 8.522 20710 0.01806 6.747
6 18600 0.01455 7.626 15007 0.01131 9.969 19775 0.01806 7.215
7 16608 0.01459 8.200 13129 0.01131 10.145 18869 0.01806 7.339
8 15332 0.01459 8.726 11444 0.01131 10.711 17430 0.01805 7.916
9 13971 0.01459 9.550 — — — 15982 0.01805 8.703

10 12812 0.01459 10.827 — — — 14748 0.01805 9.130
11 — — — — — — 13322 0.01805 9.762
12 — — — — — — 11728 0.01805 10.790

Table 2: Comparison of structured pruning results for the Dense network across three ranking methods. Each group of columns shows the
parameter count, error, and real-time factor FRT at successive pruning iterations. Dashes indicate early termination of the pruning process
for that method.

Iteration Minimum Weights Mean Activations Minimization

Params Error FRT Params Error FRT Params Error FRT

0 30081 0.01067 3.737 30081 0.01067 3.704 30081 0.01067 3.505
1 28305 0.01032 3.941 27815 0.01059 4.136 27244 0.01400 3.926
2 26529 0.00953 4.515 25348 0.01068 4.549 24385 0.03651 4.424
3 24753 0.00981 4.731 23588 0.01038 4.918 22403 0.04666 4.967
4 22977 0.01097 5.189 20701 0.01043 5.624 20271 0.04543 5.560
5 21201 0.01735 5.431 18467 0.01025 6.402 18516 0.04211 5.917
6 18724 0.01804 6.036 16575 0.01003 6.846 16195 0.04289 6.524
7 15717 0.01804 7.147 14721 0.01020 7.509 14472 0.04161 7.497
8 13149 0.01813 8.239 12622 0.01022 8.206 12384 0.04166 8.505
9 11496 0.01796 9.100 — — — — — —

Table 3: Comparison of structured pruning results for the Convolutional network across three ranking strategies. Each column group
reports the number of parameters, error, and real-time factor FRT at successive pruning iterations.

all three ranking methods. The Mean Activations ranking main-
tained the smallest validation error as the parameter count de-
creased. Minimum Weights ranking maintained a similarly small
validation error until the parameter count dropped below 22,000,
at which point the validation error increased by nearly an order of
magnitude. As with the dense network experiment, pruning with
Minimization ranking led to the largest validation error. As the pa-
rameter count decreased, the real-time performance improved by
more than a factor of 2. A model of the expected error is made
to explain the behaviour of the error as the parameter count is re-
duced.

4.3.2. Error Modelling w.r.t Conv.

Consider a single-layer 1D CNN with input dimension n0, kernel
size k, stride 1, and d1 convolutional filters, each followed by a
piecewise-linear activation function σ. From [31], the number of
linear regions RN generated by this CNN scales polynomially as
RN = Θ(dk1). The weight sharing and locality imposes structural
dependencies. More specifically, the convolutional layer’s activa-
tion boundaries repeat across the input domain due to translation-
invariant filters, and therefore the CNN will not independently po-
sition d1 partitions everywhere on R —as in §4.2.2.

As layers are stacked, the partitioning of the input becomes
progressively finer, and the number of regions can multiply

through compositions. Approximately, if layer 1 yields r1 regions
and layer 2 yields r2 regions on each region of layer 1, the compo-
sition would yield on the order of r1 · r2 total regions [32].

In comparison, weight sharing means fewer independent pa-
rameters, so a single convolution layer cannot cover the input
space as freely as a dense layer. This explains the polynomial
(rather than exponential) scaling of region count. Importantly, this
improves parametric efficiency when the target function has local
“features" (in function space or the corresponding higher dimen-
sional latent space).

Lemma 4.3.1 (CNN Approximation Error for Smooth Functions).
LetA be a CNN that realizes a continuous function f : [a, b]→ R
that is twice continuously differentiable with a bounded second
derivative (κ(f ; ε) → §8.0.2). Then the uniform approximation
error ∥A(x)− f(x)∥∞:

max
x∈[a,b]

|A(x)− f(x)| ≤ M

8
· max
1≤i≤R

(xi − xi−1)
2 (9)

where x0 = a < x1 < · · · < xR = b are the breakpoints defining
the linear segments of A. If these segments are uniformly spaced
with h = (b−a)/R, the bound simplifies to: ∥A(x)−f(x)∥∞ ≤
M(b−a)2

8R2 . Equivalently, to guarantee an approximation error L =

DAFx.5

< >

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

362



Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

∥A(x)− f(x)∥∞ ≤ ε, it suffices that

R ≥ (b− a)
√
M√

8ε
. (10)

Proof. On each subinterval [xi−1, xi], Taylor’s theorem (with the
Lagrange remainder) gives f(x) = f̃(x)+ f ′′(ξi)

2
(x−xi−1)(x−

xi) for some ξi ∈ [xi−1, xi], where f̃ is the linear interpolant. The
maximum of the error term |f(x)− f̃(x)| over the interval occurs
at the midpoint, yielding the bound M

8
(xi − xi−1)

2.

Remark 4.3.1. Since a CNN realizes a piecewise function, its ex-
pressivity in terms of the number of distinct linear regions must at
least match the number required by classical approximation theory.

In ideal cases, where all partitions are uniform (where h =
b−a
R

is the length of each subinterval), it suffices to choose Φ :=

R ≥
⌈

(b−a)
√
M√

8ε

⌉
to guarantee L ≤ ε.

4.4. Pruning LSTM

4.4.1. Results of Pruning

Table 4 shows the results of the recurrent network pruning exper-
iment. Figure 1 shows a visualization of experiment results for
all three ranking methods. Both the Mean Activations and Min-
imization rankings maintained similarly low validation errors as
the parameter count decreased. Notably, pruning with Minimum
Weights ranking led to a significantly larger validation error. It
makes sense that Minimum Weights would be a poor ranking strat-
egy for pruning recurrent neural networks given that recurrent sys-
tems can be extremely sensitive to small changes to coefficients in
the recursive path. As the parameter count decreased, the real-time
performance improved by more than a factor of 2. A model of the
expected error is made to explain the behaviour of the error as the
parameter count is reduced.

4.4.2. Error Modelling w.r.t LSTM

Following Definition 8.0.1, for a given target state-transition func-
tion of the underlying dynamical system, let f : Rn ×Rdx → Rn

denote the true state evolution mapping, and g : Rn → R de-
note the output (readout) function, such that the system evolves
as st = f(st−1, xt) and yt = g(st). The recurrent approxi-
mator A is composed of a learned state transition function FΘ :
Rn × Rdx → Rn and a learned readout function GΘ : Rn → R,
such that the predicted state is ht = FΘ(ht−1, xt) and the out-
put is ŷt = GΘ(ht). The subscript Θ denotes the set of learned
parameters of the network.

The parameter-complexity measure κ(f ; ε) of an approxima-
torA approximating the true dynamics f depends on the Lipschitz
constant Lf of the transition dynamics and the achievable one-step
error ε∗ for a given tolerance ε > 0.

Proposition 4.4.1. To derive the bound |A(xt)−f(xt)|, we begin
by defining the hidden state error at time t as εt = ∥st − ht∥,
where st is the true hidden state and ht is the approximated hidden
state generated by A. Assuming the target transition function f is
Lipschitz continuous with constant Lf yields that Lfεt−1 =

Lf∥st−1 − ht−1∥ ≥ ∥f t(st−1, xt)− f t(ht−1, xt)∥ (11)

If the A realizes a one-step error bounded by ∥f t(ht−1, xt) −
FΘ(ht−1, xt)∥ ≤ ε∗, then by the triangle inequality [33] the total
hidden state error satisfies εt ≤ Lfεt−1 + ε∗. Unrolling this re-

currence yields εt ≤ Lt
fε0 + ε∗

∑t−1
j=0 L

j
f = Lt

fε0 + ε∗
1−Lt

f

1−Lf
for

Lf ̸= 1.
If the readout function2 g is Lipschitz continuous with con-

stant Lg , then the output error is bounded as |A(xt) − f(xt)| =
|GΘ(ht)−g(st)| ≤ Lgεt. Substituting the expression for εt gives
the final bound:

|A(xt)− f(xt)| ≤ Lg

(
Lt

fε0 +
ε∗

1− Lf
(1− Lt

f )

)
. (12)

Proposition 4.4.2 (Parameter Lower Bound via One-Step Error
Decay). Suppose the one-step approximation error ϵ of the recur-
rent approximatorA admits an inverse power-law scaling with pa-
rameter count. That is, for some constants C > 0 and α > 0,

ϵ ≤ C Param(A)−α (13)

Following from §12, the asymptotic regime where t→∞ or ε0 →
0, this reduces to the uniform bound to:

|A(xt)− f(xt)| ≤
Lg ϵ

1− Lf
(14)

To guarantee that the approximation error satisfies |A(xt) −
f(xt)| ≤ ε, it is necessary that ϵ ≤ (1−Lf ) ε

Lg
. Substituting the

assumed scaling of ϵ in terms of Param(A), we obtain

C Param(A)−α ≤ (1− Lf ) ε

Lg
(15)

which implies a lower bound on the number of parameters:

Param(A) ≥
(

C Lg

(1− Lf ) ε

) 1
α

(16)

4.5. Analysis

When viewing all the experiment results together, several notable
results are evident. First, all three neural networks were able to
be successfully pruned, to point of achieving a significant im-
provement in real-time performance with minimal change in val-
idation error. Second, pruning with a Mean Activations ranking
achieved good results for all three network architectures. Addi-
tionally, pruning with Minimum Weights and Minimization rank-
ings achieved poor results for most of the networks, although Min-
imization pruning was successful for the recurrent network. Fi-
nally, an error model for each network architecture provides in-
sight into the required parameter count needed accurately model a
system with some given complexity.

The source code used to train the networks and perform the ex-
periments is available on GitHub.3 An audio plugin was developed

2f t and g decompose the overall behavior of the system. f t(st−1, xt)
describes system transitions from state st−1 to state st given xt; g(st)
maps the current state to the observable output yt. Thus, full system be-
havior can be written as a composition: f(x1:t) = (g ◦ f (t))(s0, x1:t),
where f (t) is recursively applied over the input sequence to produce st ,
and g maps that state to the final output. A = GΘ ◦ F

(t)
Θ mimics this

composition.
3https://github.com/jatinchowdhury18/

neural-pruning

DAFx.6

< >

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

363

https://github.com/jatinchowdhury18/neural-pruning
https://github.com/jatinchowdhury18/neural-pruning


Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

Iteration Minimum Weights Mean Activations Minimization

Params Error FRT Params Error FRT Params Error FRT

0 28981 0.00711 7.157 28981 0.00711 7.228 28981 0.00711 7.233
1 26321 0.01533 8.126 26321 0.00712 8.110 26321 0.00697 8.147
2 23789 0.03911 8.593 23789 0.00767 8.547 23789 0.00768 8.642
3 21385 0.04389 9.737 21385 0.01305 9.699 21385 0.01043 9.799
4 19109 0.07513 10.462 19109 0.01332 10.409 19109 0.01553 10.499
5 16961 0.06982 11.738 16961 0.01485 11.836 16961 0.02066 11.935
6 14941 0.06532 12.675 14941 0.01926 12.944 14941 0.01705 12.952
7 13049 0.06397 14.281 13049 0.01975 14.859 13049 0.01640 14.892
8 11285 0.07459 16.443 11285 0.02015 16.583 11285 0.01729 16.604

Table 4: Comparison of structured pruning results for the LSTM network across three ranking strategies. Each column group shows
parameter count, error, and real-time factor FRT per pruning iteration.

(CLAP/VST3/AU) based on the LSTM network, to demonstrate
the effects of pruning the network with different ranking methods
on real-time audio input. Pre-built binaries of the plugin for Win-
dows and MacOS are available in the GitHub repository.

5. CONCLUSIONS

This paper investigated the effectiveness of structured pruning
strategies for real-time neural audio effects, evaluating three repre-
sentative architectures —dense, convolutional, and recurrent net-
works —under various pruning schedules and ranking criteria. We
demonstrated that substantial reductions in parameter count can be
achieved with minimal degradation in numerical fidelity, yielding
meaningful improvements in real-time performance across all ar-
chitectures.

We introduced a novel theoretical framework for error model-
ing as parameter count scales (downwards), providing network ar-
chitecture specific bounds on approximation error in terms of net-
work complexity and structural properties of the target function.
These bounds offer a principled way to relate pruning-induced
sparsity to model fidelity and highlight the differences in param-
eter efficiency and functional flexibility between dense, convolu-
tional, and recurrent models.

Overall, our results suggest that structured pruning, guided by
activation-aware ranking strategies, offers a viable and theoreti-
cally grounded pathway for optimizing neural audio effects in real-
time systems. Future research topics may include pruning audio
effect neural networks for sparsity, more sophisticated parameter-
complexity analysis, and the development of novel ranking meth-
ods, as well as other methods for optimizing neural networks in-
cluding distillation and quantization.

6. ACKNOWLEDGMENTS

Many thanks to the anonymous reviewers!

7. REFERENCES

[1] S. D’Angelo, L. Gabrielli, and L. Turchet, “Fast Approxi-
mation of the Lambert W Function for Virtual Analog Mod-
elling,” in Proc. of the 22nd Int. Conference on Digital Audio
Effects (DAFx-19), Sept. 2019.

[2] M. A. Martínez Ramirez and J. D. Reiss, “Modeling of

Nonlinear Audio Effects with End-to-End Deep Neural Net-
works,” arXiv preprint arXiv:1810.06603, Oct. 2018.

[3] E.-P. Damskägg, L. Juvela, and V. Välimäki, “Real-Time
Modeling of Audio Distortion Circuits with Deep Learning,”
in Proc. of the 16th Sound and Music Computing Conference
(SMC-2019), May 2019.

[4] A. Wright, E.-P. Damskägg, and V. Välimäki, “Real-Time
Black-Box Modelling with Recurrent Neural Networks,” in
Proc. of the 22nd Int. Conference on Digital Audio Effects
(DAFx-19), Sept. 2019.

[5] A. Carson, A. Wright, J. Chowdhury, V. Välimäki, and
S. Bilbao, “Sample Rate Independent Recurrent Neural Net-
works for Audio Effects Processing,” in 27th International
Conference on Digital Audio Effects, Surrey, UK, 2024,
p. 17.

[6] Neil Gershenfeld, The Nature of Mathematical Modeling,
Cambridge University Press, USA, 1999.

[7] D. W. Blalock, J. J. G. Ortiz, J. Frankle, and J. V. Guttag,
“What is the State of Neural Network Pruning?,” arXiv
preprint arXiv:2003.03033, 2020.

[8] Y. LeCun, J. Denker, and S. Solla, “Optimal Brain Dam-
age,” in Advances in Neural Information Processing Systems,
D. Touretzky, Ed. 1989, vol. 2, Morgan-Kaufmann.

[9] C.W. Omlin and C.L. Giles, “Pruning Recurrent Neural Net-
works for Improved Generalization Performance,” in Pro-
ceedings of IEEE Workshop on Neural Networks for Signal
Processing, 1994, pp. 690–699.

[10] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz,
“Pruning Convolutional Neural Networks for Resource Ef-
ficient Inference,” arXiv: Learning, 2016.

[11] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste,
“Sparsity in Deep Learning: Pruning and Growth for Effi-
cient Inference and Training in Neural Networks,” J. Mach.
Learn. Res., vol. 22, no. 1, Jan. 2021.

[12] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and
C. E. Leiserson, “Parallel Sparse Matrix-Vector and Matrix-
Transpose-Vector Multiplication using Compressed Sparse
Blocks,” in Proceedings of the Twenty-First Annual Sym-
posium on Parallelism in Algorithms and Architectures, New
York, NY, USA, 2009, SPAA ’09, p. 233–244, Association
for Computing Machinery.

DAFx.7

< >

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

364



Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25), Ancona, Italy, 2 - 5 September 2025

[13] V. Isaac–Chassande, A. Evans, Y. Durand, and F. Rousseau,
“Dedicated Hardware Accelerators for Processing of Sparse
Matrices and Vectors: A Survey,” ACM Trans. Archit. Code
Optim., vol. 21, no. 2, Feb. 2024.

[14] J. Chowdhury, “RTNeural: Fast Neural Inferencing for Real-
Time Systems,” arXiv preprint arXiv:2106.03037, 2021.

[15] TensorFlow Developers, “Trim Insignificant Weights,” [On-
line; accessed Feb. 16, 2025].

[16] M. Paganini, “Pruning Tutorial,” July 2019, [Online; ac-
cessed Feb. 16, 2025].

[17] S. Anwar, K. Hwang, and W. Sung, “Structured Pruning of
Deep Convolutional Neural Networks,” J. Emerg. Technol.
Comput. Syst., vol. 13, no. 3, Feb. 2017.

[18] K. Simonyan and A. Zisserman, “Very Deep Convolu-
tional Networks for Large-Scale Image Recognition,” arXiv
preprint arXiv:1409.1556, 2015.

[19] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf,
“Pruning Filters for Efficient ConvNets,” arXiv preprint
arXiv:1608.08710, 2017.

[20] G. Hinton, O. Vinyals, and J. Dean, “Distilling the
Knowledge in a Neural Network,” arXiv preprint
arXiv:1503.02531, 2015.

[21] L. Wei, Z. Ma, C. Yang, and Q. Yao, “Advances in the Neural
Network Quantization: A Comprehensive Review,” Applied
Sciences, vol. 14, no. 17, 2024.

[22] T. Asami, R. Masumura, Y. Yamaguchi, H. Masataki, and
Y. Aono, “Domain Adaptation of DNN Acoustic Mod-
els using Knowledge Distillation,” in 2017 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), 2017, pp. 5185–5189.

[23] R. Yamamoto, E. Song, and J.-M. Kim, “Probability Density
Distillation with Generative Adversarial Networks for High-
Quality Parallel Waveform Generation,” in Interspeech,
2019.

[24] S.T. Sreenivas, S. Muralidharan, R. Joshi, M. Chochowski,
A.S. Mahabaleshwarkar, G. Shen, J. Zeng, Z. Chen,
Y. Suhara, S. Diao, C. Yu, W.C. Chen, H. Ross, O. Olabiyi,
A. Aithal, O. Kuchaiev, D. Korzekwa, P. Molchanov, M. Pat-
wary, M. Shoeybi, J. Kautz, and B. Catanzaro, “LLM Prun-
ing and Distillation in Practice: The Minitron Approach,”
arXiv preprint arXiv:2408.11796, 2024.

[25] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and
Y. Bengio, “Binarized Neural Networks: Training Deep
Neural Networks with Weights and Activations Constrained
to +1 or -1,” arXiv preprint arXiv:1602.02830, 2016.

[26] T. Ganguli and E. K. P. Chong, “Activation-Based Pruning
of Neural Networks,” Algorithms, vol. 17, no. 1, 2024.

[27] Y. Lu and J. Lu, “A Universal Approximation Theorem of
Deep Neural Networks for Expressing Probability Distribu-
tions,” Advances in neural information processing systems,
vol. 33, pp. 3094–3105, 2020.

[28] Richard L. Burden and Douglas J. Faires, Numerical Analy-
sis, Cengage Learning, 2010.

[29] R. Pascanu, G. Montufar, and Y. Bengio, “On the Num-
ber of Response Regions of Deep Feed Forward Net-
works with Piece-Wise Linear Activations,” arXiv preprint
arXiv:1312.6098, 2014.

[30] G. Montúfar, R. Pascanu, K. Cho, and Y. Bengio, “On the
Number of Linear Regions of Deep Neural Networks,” arXiv
preprint arXiv:1402.1869, 2014.

[31] H. Xiong, L. Huang, M. Yu, L. Liu, F. Zhu, and L. Shao,
“On the number of linear regions of convolutional neural net-
works,” in International Conference on Machine Learning.
PMLR, 2020, pp. 10514–10523.

[32] Chinmay Hegde, “Foundations of Deep Learning,” 2022,
Chapter 3: The Role of Depth.

[33] Harold R. Jacobs, Geometry: Seeing, Doing, Understanding,
Macmillan, 2003.

8. APPENDIX

Definition 8.0.1 (Lipschitz Continuity). A function f is said to be
Lipschitz continuous on the interval [a, b] if and only if there exists
a non-negative constant L such that:

|f(x)− f(y)| ≤ L|x− y|, ∀x, y ∈ [a, b]

This definition establishes that the rate of change of a Lipschitz
continuous function is bounded by the constant L, often called the
Lipschitz constant. Geometrically, this means that the graph of f
cannot contain any ’sharp’ features like jumps or vertical tangent
lines, and the slope between any two points on the graph is at most
L.

Definition 8.0.2 (Maximum Bounded Second Derivative). For a
function f on [a, b] where the second derivative f ′′ = d2f(x)

dx2

exists and is bounded in absolute value, we define the maximum
magnitude of the second derivative as:

M = max
x∈[a,b]

|f ′′(x)|

The constant M provides a measure of the maximum curva-
ture or "bending" of the function f across its domain. A smaller
value of M indicates a function with more gradual changes in its
slope, while a larger value of M corresponds to more pronounced
changes in the function’s rate of change.

DAFx.8

< >

Proceedings of the 28th International Conference on Digital Audio Effects (DAFx25) Ancona, Italy, September 2-5, 2025

365


	1  Introduction
	2  Prior Work
	2.1  Pruning for Sparsity
	2.2  Structured Pruning in Convolutional Networks
	2.3  Pruning Alternatives
	2.3.1  Distillation
	2.3.2  Quantization


	3  Methodology
	3.1  Notation
	3.2  Structured Pruning Techniques
	3.2.1  Minimum Weights Ranking
	3.2.2  Mean Activations Ranking
	3.2.3  Minimization Ranking

	3.3  Experimental Setup

	4  Results
	4.1  Preliminaries
	4.2  Pruning Feedforward Dense Networks
	4.2.1  Results of Pruning
	4.2.2  Error Modelling w.r.t Pruning in ReLU Networks

	4.3  Pruning Feedforward Conv.
	4.3.1  Results of Pruning
	4.3.2  Error Modelling w.r.t Conv.

	4.4  Pruning LSTM
	4.4.1  Results of Pruning
	4.4.2  Error Modelling w.r.t LSTM

	4.5  Analysis

	5  Conclusions
	6  Acknowledgments
	7  References
	8  Appendix


@inproceedings{DAFx25_paper_78,
    author = "Clarke, Christopher Johann and Chowdhury, Jatin",
    title = "{Inference-Time Structured Pruning for Real-Time Neural Network Audio Effects}",
    booktitle = "Proceedings of the 28-th Int. Conf. on Digital Audio Effects (DAFx25)",
    editor = "Gabrielli, L. and Cecchi, S.",
    location = "Ancona, Italy",
    eventdate = "2025-09-02/2025-09-05",
    year = "2025",
    month = "Sept",
    publisher = "",
    issn = "2413-6689",
    doi = "",
    pages = "358--365"
}


